CMR: \(\dfrac{1}{R_{tđ_{ }}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong mạch gồm hai điện trở R2, R3 mắc song song, cường độ dòng điện chạy qua các điện trở là: \(I_1=\dfrac{U_1}{R_1}\) và \(I_2=\dfrac{U_2}{R_2}\), trong đó U1 = U2.
Cường độ dòng điện chạy qua đoạn mạch là I = I1 + I2 = \(\dfrac{U}{R_1}+\dfrac{U}{R_2}\) = \(\dfrac{U}{R_{td}}\). Từ đó ta có \(\dfrac{1}{R_{td}}\) = \(\dfrac{1}{R_1}+\dfrac{1}{R_2}\)
Suy ra: \(R_{td}=\dfrac{R_1R_2}{R_1+R_2}\)
@Nguyễn Việt Lâm@Uyen Vuuyen@Trần Trung Nguyên@Akai Haruma@JakiNatsumi@bullet sivel@Vương Đại Nguyên@Đời về cơ bản là buồn... cười!!!@Tạ Thị Diễm Quỳnh
đề này bạn thiếu nhưng do mình đọc cái chủ đề nên:
công thức \(\dfrac{R_1}{R_2}=\dfrac{l_1}{l_2}.\dfrac{S_2}{S_1}\) tồn tại khi có chung Điện trở suất là ρ\
Ta có: \(R_1=\rho\dfrac{l_1}{S_1}\)(1)
\(R_2=\rho\dfrac{l_2}{S_2}\)(2)
Lập tỉ số \(\dfrac{\left(1\right)}{\left(2\right)}\) Ta được: \(\dfrac{R_1}{R_2}=\dfrac{\rho.\dfrac{l_1}{S_1}}{\rho.\dfrac{l_2}{S_2}}=\dfrac{\dfrac{l_1}{S_1}}{\dfrac{l_2}{S_2}}=\dfrac{l_1}{S_1}.\dfrac{S_2}{l_2}=\dfrac{l_1}{l_2}.\dfrac{S_2}{S_1}\)
Vì R1//R2 nên
U=U1=U2
Mà U=Rtđ*I=\(\frac{R1\cdot R2}{R1+R2}\cdot I12\)
⇒U1=U2=\(\frac{R1\cdot R2}{R1+R2}\cdot I12\)
Ta có I1=\(\frac{U1}{R1}=\frac{\frac{R1\cdot R2}{R1+R2}\cdot I12}{R1}=\frac{\frac{R1\cdot R2}{R1+R2}}{R1}\cdot I12=\frac{R2}{R1+R2}\cdot I12\left(đpcm\right)\)
Thứ nhất: $(O_1); (O_2)$ tiếp xúc nhau tại $A$ chứ không phải tiếp tuyến tại $A$.
Thứ hai: $(O_1)$ và $(O_2)$ tiếp xúc trong, tiếp xúc ngoài hay đề chỉ nói chung chung là tiếp xúc thôi hả bạn?
Xét đoạn mạch gồm ba điện trở \(R_1,R_2,R_3\) mắc song song :
Ta có : \(I=I_1+I_2+I_3\)
\(U=U_1=U_2=U_3\) hay \(IR_{tđ}=I_1R_1=I_2R_2=I_3R_3\)
Vì \(I_1< I\), do đó \(R_{tđ}< R_1\).
Do \(I_2< I\) nên \(R_{tđ}< R_2\), tương tự với \(I_3< I\Rightarrow R_{tđ}< R_3\). (đpcm)
Cách khác cách của Minh :v
Trong đoạn mạch song song mắc n điện trở:
\(\dfrac{1}{R_{rđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}+...+\dfrac{1}{R_n}\)
Ta có: \(\dfrac{1}{R_{tđ}}>\dfrac{1}{R_1}\Rightarrow R_{tđ}< R_1\)
\(\dfrac{1}{R_{tđ}}>\dfrac{1}{R_2}\Rightarrow R_{tđ}< R_2\)
\(\dfrac{1}{R_{tđ}}>\dfrac{1}{R_3}\Rightarrow R_{tđ}< R_3\)
...
\(\dfrac{1}{R_{tđ}}>\dfrac{1}{R_n}\Rightarrow R_{tđ}< R_n\)
Do đó điện trở tương đương của đoạn mạch song song nhỏ hơn điện trở mỗi thành phần.
+ Cường độ dòng điện chạy qua mạch chính và các điện trở là: \(I=\dfrac{U}{R_{t\text{đ}}};I_1=\dfrac{U_1}{R_1};I_2=\dfrac{U_2}{R_2}\)
+ Mặt khác, mạch gồm hai điện trở R1, R2 mắc song song nên ta có:
U= U1= U2 ; I=I1 + I2
➩ \(\dfrac{U}{R_{t\text{đ}}}=\dfrac{U}{R_1}+\dfrac{U}{R_2}\)
➩ \(\dfrac{1}{R_{t\text{đ}}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}\)