Cho các số thực a,b,m thỏa mãn:a+b=2m và ab=m2.Chứng tỏ rằng a=b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ca}{c+a}+\dfrac{c\left(a+b+c\right)+ab}{a+b}\)
\(VT=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{c+a}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\)
Ta có:
\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{c+a}\ge2\left(a+b\right)\)
Tương tự: \(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(a+c\right)\)
\(\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(b+c\right)\)
Cộng vế với vế:
\(\Rightarrow VT\ge2\left(a+b+c\right)=2\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Đề đúng không em nhỉ?
Đề bài thế này vẫn tính được a;b;c, nhưng số rất xấu (căn thức, lớp 7 chưa học)
Biểu thức thứ hai: \(b+bc+c=5\) phải là \(b+bc+c=8\) hoặc 3; 15; 24; 35; 48... gì đó mới hợp lý, nghĩa là cộng thêm 1 phải là 1 số chính phương
Lời giải:
Vì \(\left\{\begin{matrix} a+b=2m\\ ab=m^2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} (a+b)^2=4m^2\\ 4ab=4m^2\end{matrix}\right.\)
\(\Rightarrow (a+b)^2=4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab=0\)
\(\Leftrightarrow a^2-2ab+b^2=0\Leftrightarrow (a-b)^2=0\Rightarrow a=b\)
Ta có đpcm.
Cách khác
\(ab\le\dfrac{\left(a+b\right)^2}{4}\Leftrightarrow m^2\le\dfrac{\left(a+b\right)^2}{4}\Leftrightarrow m\le\dfrac{a+b}{2}\)
\(\Leftrightarrow2m\le a+b\). Theo đề \(2m=a+b\)
\("="\Leftrightarrow a=b\)