Tìm x 33x:11x-1=80
812x.27x=911
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A=-x^2 -11x+7 =-(x^2 +11x -7) = -(x^2 +11x +121/4) +149/4 >= 149/4
A(max)=149/4 tại x=-11/2
b: Ta có: \(-5x^2+7x+8\)
\(=-5\left(x^2-\dfrac{7}{5}x-\dfrac{8}{5}\right)\)
\(=-5\left(x^2-2\cdot x\cdot\dfrac{7}{10}+\dfrac{49}{100}-\dfrac{209}{100}\right)\)
\(=-5\left(x-\dfrac{7}{10}\right)^2+\dfrac{209}{20}\le\dfrac{209}{20}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{7}{10}\)
Giải Phương Trình Sau (Nhớ ghi cách làm nha mình k đúng cho)
b) 3x4-3x3+9x3-9x2-24x2+24x-48x+48
=3x3(x-1)+9x2(x-1)-24x(x-1)-48(x-1)
=(x-1)(3x3+9x2-24x-48)
=3(x-1)(x3+3x2-8x-16)
a: \(=\dfrac{6x^2+9x+8x+12}{2x+3}=\dfrac{3x\left(2x+3\right)+4\left(2x+3\right)}{2x+3}\)
=3x+4
b: \(=\dfrac{5x^2-2x+15x-6}{5x-2}\)
\(=\dfrac{x\left(5x-2\right)+3\left(5x-2\right)}{5x-2}=x+3\)
c: \(=\dfrac{-8x^2+20x+2x-5-10}{2x-5}=-4x+1+\dfrac{-10}{2x-5}\)
d: \(=\dfrac{14x^2-35x+2x-5}{2x-5}=\dfrac{7x\left(2x-5\right)+\left(2x-5\right)}{2x-5}\)
=7x+1
e: \(=\dfrac{2x^3+x^2+6x^2+3x+12x+6}{2x+1}\)
\(=\dfrac{x^2\left(2x+1\right)+3x\left(2x+1\right)+6\left(2x+1\right)}{2x+1}=x^2+3x+6\)
f: \(=\dfrac{x^3-2x^2+6x^2-12x+x-2}{x-2}=x^2+6x+1\)
g: \(=\dfrac{12x^3+6x^2-4x^2-2x+6x+3}{2x+1}=6x^2-2x+3\)
b, \(đk:x\ge2\)
Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0
\(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)
\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)
\(\Leftrightarrow x^3-11x^2+35x-25\le0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\) (*)
Có \(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)
Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5
c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)
\(\Leftrightarrow4x^3+x>0\)
Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))
\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)
\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....
d) Đk: \(x\ge\dfrac{3}{4}\)
Áp dụng bđt cosi:
\(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)
\(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)
\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)
\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)
Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)
Dấu = xảy ra khi x=1 (tm)
e, \(x^3+5x^2+8x+4=x^3+x^2+4x^2+4x+4x+4\)
\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)
d, \(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
a) \(\dfrac{4y^2}{11x^4}:\left(-\dfrac{8y}{33x^2}\right)\)
\(=\dfrac{4y^2}{11x^4}.\left(-\dfrac{33x^2}{8y}\right)\)
\(=-\dfrac{4y^2.33x^2}{11x^4.8y}\)
\(=-\dfrac{3y}{2x^2}\)
b) \(\dfrac{x^2-4}{3x+12}.\dfrac{x+4}{2x-4}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}.\dfrac{x+4}{2\left(x-2\right)}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)\left(x+4\right)}{3\left(x+4\right).2\left(x-2\right)}\)
\(=\dfrac{x+2}{6}\).