Cho hình bình hành ABCD. M,N lần lượt là trung điểm AD, CB, đường chéo BD cắt AN, CM tại I,H. Gọi E, F lần lượt là trung điểm AB, CD. Tứ giác ABCD cần điều kiện gì để EIFH là hình chữ nhật.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC có
M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình
=>MN//AC và MN=AC/2
Xét ΔDCA có
E,F lần lượt là trung điểm của CD,DA
=>EF là đường trung bình
=>EF//AC và EF=AC/2
=>MN//EF và MN=EF
Xét tứ giác MNEF có
MN//EF
MN=EF
Do đó: MNEF là hình bình hành
b: Để MNEF là hình chữ nhật thì MN vuông góc NE
mà MN//AC và NE//BD
nên AC vuông góc BD
a) Xét tam giác ABD có :
M là trung điểm của AB
F là trung điểm của BD
=) MF là đường trung bình của tam giác ABD
=) MF//AD và MF=\(\frac{1}{2}\)AD (1)
Xét tam giác tam giác ACD có :
N là trung điểm CD
E là trung điểm AC
=) NE là đường trung bình của tam giác ACD
=) NE//AD và NE=\(\frac{1}{2}\)AD (2)
Từ (1) và (2) =) Tứ giác MENF là hình bình hành
Bài 3:
a: Ta có: AD+DB=AB
AE+EC=AC
mà DB=EC và AB=AC
nên AD=AE
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
Hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)
nên BDEC là hình thang cân
b: Để BD=DE=EC thì BD=DE và DE=EC
BD=DE thì ΔDBE cân tại D
=>\(\widehat{DBE}=\widehat{DEB}\)
mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)
nên \(\widehat{DBE}=\widehat{EBC}\)
=>\(\widehat{ABE}=\widehat{EBC}\)
=>BE là phân giác của góc ABC
=>E là chân đường phân giác kẻ từ B xuống AC
Xét ΔEDC có ED=EC
nên ΔEDC cân tại E
=>\(\widehat{EDC}=\widehat{ECD}\)
mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)
nên \(\widehat{ECD}=\widehat{DCB}\)
=>\(\widehat{ACD}=\widehat{BCD}\)
=>CD là phân giác của góc ACB
=>D là chân đường phân giác từ C kẻ xuống AB
Bài 2:
a: Ta có: ABCD là hình bình hành
=>AB//CD và AB=CD(1)
Ta có: M là trung điểm của AB
=>\(AM=MB=\dfrac{AB}{2}\left(2\right)\)
Ta có: N là trung điểm của CD
=>\(NC=ND=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra AM=MB=NC=ND
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: Ta có AMCN là hình bình hành
=>AN//CM
Xét ΔDFC có
N là trung điểm của DC
NE//FC
Do đó: E là trung điểm của DF
=>DE=EF(4)
Xét ΔABE có
M là trung điểm của BA
MF//AE
Do đó: F là trung điểm của BE
=>BF=FE(5)
Từ (4) và (5) suy ra BF=FE=ED
bạn xem lại đề 1 chút đi! hình như sai thứ tự điểm đó bạn! mk ko vẽ được hình
k mk đi
ai k mk
mk k lại
thanks
Xét tứ giác AMCN có AM song song và bằng CN nên nó là hình bình hành.
Suy ra AN song song và bằng MC.
Xét tam giác DMH và tam giác BNI có:
DM = BN
\(\widehat{MDH}=\widehat{NBI}\) (So le trong)
\(\widehat{DMH}=\widehat{BNI}\) (Cùng bằng góc \(\widehat{HCN}\))
\(\Rightarrow\Delta DMH=\Delta BNI\left(g-c-g\right)\)
\(\Rightarrow\) IN = HM
Vậy nên AI = HC.
Từ đó ta có AI = AN - IC = MC - MH = HC.
Xét tứ giác AICH có AH song song và bằng IC nên AICH là hình bình hành. Suy ra AH = IC.
Ta thấy ngay trong tam giác DIC, HF là đường trung bình. Vậy thì HF song song và bằng một nửa IC. Tương tự EI song song và bằng một nửa AH. Vậy nên EIFH là hình bình hành.
Để hình bình hành EIFH là hình chữ nhật thì EF = HI.
Xét tam giác BHC có N là trung điểm BC, IN // HC nên IN là đường trung bình của tam giác. Vậy thì IB = HI.
Tương tự HI = DH.
Từ đó ta có IH = BD/3
Mà EF = BC nên để EIFH là hình chữ nhật thì hình bình hành ABCD có BD = 3BC.