Cho hình thang ABCD có hai đáy là AB và CD . Gọi E , F , K lần lượt là trung điểm của các cạnh AD , BC ,BD .
a ) Chứng minh EK//AB , KF//AB và E , F , K thẳng hàng
b) Gọi I là giao điểm EF và AC . Chứng minh : IA = IC
c ) Chứng minh : IE = KF và KE = IF
d ) Cho biết AB = 6cm , CD = 10cm . Tính IK.
Nhanh nhé
a) Xét tam giác ABD có E và K lần lượt là trung điểm của AD và DB nên EK là đường trung bình tam giác ABD.
Vậy thì EK // AB
Hoàn toàn tương tự ta có ngay KF // DC, hay KF // AB.
Ta thấy, từ một điểm K có hai đoạn thẳng EK và KF cùng song song với AB. Theo tiên đề Oclit ta có E, K, F thẳng hàng.
b) Xét tam giác ABC có F là trung điểm BC, IF // AB nên IF là đường trung bình tam giác ABC.
Vậy thì AI = IC.
c) Xét tam giác ADC có E, I lần lượt là trung điểm của AD và AC nên EI là đường trung bình tam giác ADC.
Vậy thì \(EI=\frac{DC}{2}\)
Tương tự \(KF=\frac{DC}{2}\)
Vậy nên EI = KF.
Từ đó ta có: EI - KI = KF - KI hay EK = IF.
d) Ta có KF = DC/2 = 10 : 2 = 5 (cm)
IF = AB/2 = 6 : 2 = 3 (cm)
Vậy thì KI = KF - IF = 2 (cm)