K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2022

a) Xét tam giác AIC và tam giác BIH có:

\(\widehat{AIC}=\widehat{BIH}\)(đối đỉnh)

\(\widehat{ACI}=\widehat{BHI}=90^0\)

\(\Rightarrow\Delta AIC\sim\Delta BIH\left(g.g\right)\)

Câu b em xem lại đề nhé ! Sao AC=15cm và AC=25cm được nhỉ ?

a: Xét ΔACI vuông tại C và ΔBHI vuông tại H có

\(\widehat{AIC}=\widehat{BIH}\)(hai góc đối đỉnh)

Do đó: ΔACI~ΔBHI

b: Ta có: ΔCAB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=25^2-15^2=400\)

=>\(CB=\sqrt{400}=20\left(cm\right)\)

Xét ΔABC có AI là phân giác

nên \(\dfrac{CI}{CA}=\dfrac{BI}{BA}\)

=>\(\dfrac{CI}{15}=\dfrac{BI}{25}\)

=>\(\dfrac{CI}{3}=\dfrac{BI}{5}\)

mà CI+BI=CB=20cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{CI}{3}=\dfrac{BI}{5}=\dfrac{CI+BI}{3+5}=\dfrac{20}{8}=2,5\)

=>\(CI=2,5\cdot3=7,5\left(cm\right)\)

c: Ta có: ΔACI~ΔBHI

=>\(\widehat{CAI}=\widehat{HBI}\)

mà \(\widehat{CAI}=\widehat{BAH}\)

nên \(\widehat{HBI}=\widehat{HAB}\)

Xét ΔHBI vuông tại H và ΔHAB vuông tại H có

\(\widehat{HBI}=\widehat{HAB}\)

Do đó: ΔHBI~ΔHAB

=>\(\dfrac{HB}{HA}=\dfrac{HI}{HB}\)

=>\(HB^2=HI\cdot HA\)

a: Xét ΔACI vuông tại C và ΔBIH vuông tại H có

góc AIC=góc BIH

=>ΔAIC đồng dạng với ΔBIH

b: Xét ΔHBI vuông tại H và ΔHAB vuông tại H có

góc HBI=góc HAB

=>ΔHBI đồng dạng với ΔHAB

=>HB/HA=HI/HB

=>HB^2=HA*HI