K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2018

ta có: 3102 - 2102 + 3100 - 2100

= 3100.(32 +1) - 299.(23+2)

= 3100.10 - 299.10

= 10.(3100 - 299) chia hết cho 10

=> ...

2 tháng 8 2021

a) \(3^{10}+3^{11}+3^{12}\)

⇔ \(3^{10}\left(1+3+3^2\right)\)

⇔  \(3^{10}.13\) 

⇒   \(3^{10}.13\)  chia hết cho 13

20 tháng 2 2018

giúp mình nhanh lên với mai mình đi học rùi

5 tháng 7 2015

Ta có:

\(8^{102}-2^{102}\) = \(\left(8^4\right)^{51}-\left(2^4\right)^{51}\)

Vì \(8^4\)và \(2^4\)có hàng đv là 6 nên \(\left(8^4\right)^{51}\)và \(\left(2^4\right)^{51}\)cũng có hàng đv là 6.

=> \(\left(8^4\right)^{51}-\left(2^4\right)^{51}\)có hàng đv là 0.

=> \(8^{102}-2^{102}\)chia hết cho  10

5 tháng 7 2015

Bạn xem lại đề, phải là chia hết cho 19. Có thể tìm thấy 1 ví dụ trái với đề bài.

13 tháng 8 2018

\(3^{2^{100}}-1\)

\(=3^{2^{100}}-1^{2^{100}}\)

Theo hđt số 8

\(\Rightarrow3^{2^{100}}-1⋮2\)

Mà \(3^{2^{100}}-1⋮2^{102}\)

\(\Rightarrow3^{2^{100}}-1⋮\left(2.2^{102}=2^{103}\right)\)

10 tháng 4 2017

\(A=2^{100}+2^{101}+2^{102}+...+2^{107}\)

\(A=2^{100}\left(1+2\right)+2^{102}\left(1+2\right)+...+2^{106}\left(1+2\right)\)

\(A=2^{100}.3+2^{102}.3+...+2^{106}.3\)

\(A=3\left(2^{100}+2^{102}+...+2^{106}\right)⋮3\)