CMR
\(3^{102}\)-\(^{2^{102}}\)+\(3^{100}\)-\(^{2^{100}}\)chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^{10}+3^{11}+3^{12}\)
⇔ \(3^{10}\left(1+3+3^2\right)\)
⇔ \(3^{10}.13\)
⇒ \(3^{10}.13\) chia hết cho 13
Ta có:
\(8^{102}-2^{102}\) = \(\left(8^4\right)^{51}-\left(2^4\right)^{51}\)
Vì \(8^4\)và \(2^4\)có hàng đv là 6 nên \(\left(8^4\right)^{51}\)và \(\left(2^4\right)^{51}\)cũng có hàng đv là 6.
=> \(\left(8^4\right)^{51}-\left(2^4\right)^{51}\)có hàng đv là 0.
=> \(8^{102}-2^{102}\)chia hết cho 10
Bạn xem lại đề, phải là chia hết cho 19. Có thể tìm thấy 1 ví dụ trái với đề bài.
\(3^{2^{100}}-1\)
\(=3^{2^{100}}-1^{2^{100}}\)
Theo hđt số 8
\(\Rightarrow3^{2^{100}}-1⋮2\)
Mà \(3^{2^{100}}-1⋮2^{102}\)
\(\Rightarrow3^{2^{100}}-1⋮\left(2.2^{102}=2^{103}\right)\)
ta có: 3102 - 2102 + 3100 - 2100
= 3100.(32 +1) - 299.(23+2)
= 3100.10 - 299.10
= 10.(3100 - 299) chia hết cho 10
=> ...