K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

Ta có /x-2/ \(\ge\)0

=> A = /x-2/-9/10 \(\ge\)-9/10

=> Min A = -9/10

Để Min A = -9/10 <=> x=2

20 tháng 12 2018

GTNN của biểu thức là 1945

20 tháng 12 2018

Trình bày ra bạn j đó ơi =-='

Vì \(\left[\left|2x-1\right|+3\right]^2\ge0;\left[\left|2y+1\right|+4\right]^2\ge0\)

\(\Rightarrow D\ge10\)

Dấu "=" xảy ra khi :

\(\left\{{}\begin{matrix}\left[\left|2x-1\right|+3\right]^2=0\\\left[\left|2y+1\right|+4\right]^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left|2x-1\right|+3=0\\\left|2y+1\right|+4=0\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}\left|2x-1\right|=-3\\\left|2y+1\right|=-4\end{matrix}\right.\)

\(\Rightarrow\) x và y không tồn tại 

Vì \(\left|2x-1\right|\ge0;\left|2y+1\right|\ge0\)

Vậy x, y không tồn tại để D có giá trị nhỏ nhất

20 tháng 12 2018

giá trị nhỏ nhất là 3

20 tháng 12 2018

\(\left|x-2010\right|+\left|x-2012\right|=\left|x-2010\right|+\left|x-2012\right|\ge\left|x-2010-x+2012\right|=2\)

\(\left|x-2011\right|\ge0\)

=> \(B\ge2\)

dấu = xảy ra khi \(\hept{\begin{cases}\left(x-2010\right).\left(-x+2012\right)\ge0\\x=2011\end{cases}}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow x=2011}\)

14 tháng 3 2020

Vì \(\left(x^2-9\right)^2\ge0\)\(\forall x\inℝ\)\(\left|y-2\right|\ge0\)\(\forall y\inℝ\)

\(\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|\text{​​}\ge0\)\(\forall x,y\inℝ\)\(\Rightarrow\)\(\left(x^2-9\right)^2+\left|y-2\right|\text{​​}+10\ge10\)\(\forall x,y\inℝ\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=9\\y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\).

Vậy GTNN Q = 10 khi y = 2 và x = ±3 

29 tháng 9 2015

Áp dụng bất đẳng thức giá trị tuyệt đối |a| + |b| \(\ge\) |a + b| ta có:

A = |x - 2001| + |x - 1| = |x - 2001| + |1 - x| \(\ge\) |(x - 2001) + (1 - x)| = |-2000| = 2000

=> A nhỏ nhất là 2000 ; chẳng hạn tại x = 1

\(\left|x+1,5\right|\ge0\forall x\)

Dấu " = " xảy ra khi 

| x + 1,5 | = 0

x = -1,5 

Vậy Min = 0 <=> x = -1,5

b) 

\(\left|x-2\right|\ge0\forall x\Rightarrow\left|x-2\right|-\frac{9}{10}\ge\frac{9}{10}\forall x\)

Dấu " = " xảy ra khi 

| x - 2 | = 0 

x = 2 

Vậy MinA = \(\frac{9}{10}\)<=> x = 2

\(-\left|2x-1\right|\le0\forall x\)

Dấu " = " xảy ra khi :

- | 2x - 1 | = 0

=> x = \(\frac{1}{2}\)

Vậy MaxA = 0 <=> x = \(\frac{1}{2}\)

b) 

\(-\left|5x-3\right|\le0\forall x\Rightarrow4-\left|5x-3\right|\le4\)

Dấu " = " xảy ra khi :

- | 5x - 3 | = 0

=> x = \(\frac{3}{5}\)

Vậy Max = 4 <=> x = \(\frac{3}{5}\)

Study well