Cạnh huyền của một tam giác vuông cân bằng 49cm. Tính mỗi cạnh góc vuông của tam giác đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 8: Vì em nhắn tin nhờ cô giảng bài 8 nên cô chỉ giảng bài 8 thôi nhé
Gọi các cạnh góc vuông, cạnh huyền của tam giác cần tìm lần lượt là: a; b; c
Theo bài ra ta có: a+b+c =36; \(\dfrac{a}{b}\) = \(\dfrac{3}{4}\)
\(\dfrac{a}{b}\) = \(\dfrac{3}{4}\) ⇒ \(\dfrac{a}{3}\) = \(\dfrac{b}{4}\) ⇒ \(\dfrac{a^2}{9}\) = \(\dfrac{b^2}{16}\) = \(\dfrac{a^2+b^2}{9+16}\) (1)
Vì tam giác vuông nên ta theo pytago ta có: a2 + b2 = c2 (2)
Thay (2) vào (1) ta có: \(\dfrac{a^2}{9}\) = \(\dfrac{b^2}{16}\) = \(\dfrac{c^2}{25}\)
⇒ \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) = \(\dfrac{a+b+c}{3+4+5}\) = \(\dfrac{36}{12}\) = 3
a = 3.3 = 9 (cm)
b = 3.4 = 12 (cm)
c = 3.5 = 15 (cm)
Kết luận: độ dài cạnh bé của góc vuông là: 9 cm
dộ dài cạnh lớn của góc vuông là 12 cm
độ dài cạnh huyền là 15 cm
Bài 9:
a,Gọi độ dài cạnh góc vuông là: a
Theo pytago ta có: a2 + a2 = 22 = 4 ⇒ 2a2 = 4 ⇒ a2 = 2 ⇒ a = \(\sqrt{2}\)
b, Gọi độ dài cạnh góc vuông là :b
Theo pytago ta có:
b2 + b2 = 102 =100 ⇒ 2b2 = 100 ⇒ b2 = 50⇒ b = 5\(\sqrt{2}\)
Bài 8 cô làm rồi nhé.
Bài 10 ; Gọi độ dài các cạnh góc của tam giác vuông lần lượt là:
a; b theo bài ra ta có:
\(\dfrac{a}{5}\) = \(\dfrac{b}{12}\) \(\Rightarrow\) \(\dfrac{a^2}{25}\) = \(\dfrac{b^2}{144}\) = \(\dfrac{a^2+b^2}{25+144}\) (1)
Theo pytago ta có: a2 + b2 = 522 = 2704 (2)
Thay (2) vào (1) ta có: \(\dfrac{a^2}{25}\) = \(\dfrac{b^2}{144}\) = \(\dfrac{2704}{169}\) = 16
⇒ a2 = 25.16 = (4.5)2 ⇒ a = 20
b2 = 144.16 = (12.4)2 ⇒ b = 48
Lời giải:
Gọi độ dài cạnh góc vuông lần lượt là $a$ và $b$ ($a>b>0$) (cm)
Áp dụng định lý Pitago: $a^2+b^2=60^2=3600(*)$
$a-b=12$
$\Leftrightarrow a=b+12$. Thay vào $(*)$ thì:
$(b+12)^2+b^2=3600$
$\Leftrightarrow 2b^2+24b-3456=0$
$\Leftrightarrow b^2+12b-1728=0$
$\Leftrightarrow (b-36)(b+48)=0$
Do $b>0$ nên $b=36$ (cm)
$a=b+12=36+12=48$ (cm)
Gọi x là cạnh góc vuông dài (cm) (x > 0)
Độ dài cạnh góc vuông ngắn là: x - 12 (cm)
Theo định lý Pi - ta - go, ta có phương trình:
\(x^2+\left(x-12\right)^2=60^2\)
\(\Leftrightarrow x^2+x^2+24x+144=3600\)
\(\Leftrightarrow2x^2+24x-3456=0\)
\(\Delta'=12^2-\left(-3456\right).2=7056>0\)
Do \(\Delta'>0\) nên phương trình có 2 nghiệm phân biệt:
\(x_1=\dfrac{-12+\sqrt{7056}}{2}=36\left(tm\right)\)
\(x_2=\dfrac{-12-\sqrt{7056}}{2}=-48\left(ktm\right)\)
Vậy độ dài cạnh góc vuông dài là 36 cm
Độ dài canh góc vuông ngắn là: 36 - 12 = 24 (cm)
Xét tam giác ABC vuông tại A với AB > AC, gọi AH là đường cao kẻ từ A thì ta có:
Gọi độ dài cạnh góc vuông của tam giác đó là a
Theo định lí Pitago :
a2 + a2 = 492
=> 2a2 = 2401
=> a2 = 2401 : 2 = 1200.5
=> a = \(\frac{49\sqrt{2}}{2}\)
ta có: tam giác ABC vuông cân tại A
=> AB = AC ( định lí) => AB2 = AC2
Xét tam giác ABC vuông tại A
=> AB2 + AC2 = 492 ( py-ta-go)
AB2 + AB2 = 492
2.AB2 = 492
AB2 = 1200,5
\(\Rightarrow AB=\sqrt{1200,5}cm\)
=> \(AB=AC=\sqrt{1200,5}cm\)