Cho biết\(\left(\sqrt{x^2+5}+x\right)\left(\sqrt{y^2+5}+y\right)=5\). tính x+y?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(y=\left(x^3-3x\right)^{\dfrac{3}{2}}\Rightarrow y'=\dfrac{3}{2}\left(x^3-3x\right)^{\dfrac{1}{2}}\left(x^3-3x\right)'=\dfrac{3}{2}\left(3x^2-3\right)\sqrt{x^3-3x}\)
b/ \(y'=5\left(\sqrt{x^3+1}-x^2+2\right)^4\left(\sqrt{x^3+1}-x^2+2\right)'=5\left(\sqrt{x^3+1}-x^2+2\right)^4\left(\dfrac{3x^2}{\sqrt{x^3+1}}-2x\right)\)c/
\(y'=14\left(x^6+2x-3\right)^6\left(x^6+2x-3\right)'=14\left(x^6+2x-3\right)^6\left(6x^5+2\right)\)
d/ \(y=\left(x^3-1\right)^{-\dfrac{5}{2}}\Rightarrow y'=-\dfrac{5}{2}\left(x^3-1\right)^{-\dfrac{7}{2}}\left(x^3-1\right)'=-\dfrac{15x^2}{2\sqrt{\left(x^3-1\right)^7}}\)
Đặt \(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)=5\)là A
Nhân 2 vế A cho \(\sqrt{x^2+5}-x\)ta được:
\(5.\left(y+\sqrt{y^2+5}\right)=5.\left(\sqrt{x^2+5}-x\right)\)
\(\Leftrightarrow y+\sqrt{y^2+5}=\sqrt{x^2+5}-x\)
\(\Leftrightarrow x+y=\sqrt{x^2+5}-\sqrt{y^2+5}\left(1\right)\)
Nhân 2 vế A cho \(\sqrt{y^2+5}-y\) ta được:
\(5.\left(x+\sqrt{x^2+5}\right)=5.\left(\sqrt{y^2+5}-y\right)\)
\(\Leftrightarrow x+\sqrt{x^2+5}=\sqrt{y^2+5}-y\)
\(\Leftrightarrow x+y=\sqrt{y^2+5}-\sqrt{x^2+5}\left(2\right)\)
từ (1) và (2) suy ra:
\(x+y-\left(x+y\right)=\sqrt{x^2+5}-\sqrt{y^2+5}-\left(\sqrt{y^2+5}-\sqrt{x^2+5}\right)\)
\(\Leftrightarrow2\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right)=0\)
\(\Leftrightarrow\sqrt{x^2+5}-\sqrt{y^2+5}=0\)
\(\Rightarrow x+y=\sqrt{x^2+5}-\sqrt{y^2+5}=0\)
Đặt \(\left\{{}\begin{matrix}x+2=a\\y-1=b\end{matrix}\right.\)
\(\left(a+\sqrt{a^2+1}\right)\left(b+\sqrt{b^2+1}\right)=1\)
\(\Rightarrow\left\{{}\begin{matrix}b+\sqrt{b^2+1}=\sqrt{a^2+1}-a\\a+\sqrt{a^2+1}=\sqrt{b^2+1}-b\end{matrix}\right.\)
\(\Rightarrow a+b+\sqrt{a^2+1}+\sqrt{b^2+1}=\sqrt{a^2+1}+\sqrt{b^2+1}-a-b\)
\(\Rightarrow a+b=0\)
\(\Rightarrow x+2+y-1=0\)
\(\Rightarrow x+y=-1\)
ĐKXĐ: \(x\ge-2;y\ge0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) pt đầu trở thành:
\(a\left(a^2+1\right)=b\left(ab+1\right)\)
\(\Leftrightarrow a^3+a=ab^2+b\)
\(\Leftrightarrow a^3-ab^2+a-b=0\)
\(\Leftrightarrow a\left(a^2-b^2\right)+a-b=0\)
\(\Leftrightarrow a\left(a-b\right)\left(a+b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+1\right)=0\)
\(\Leftrightarrow a-b=0\) (do \(a^2+ab+1>0;\forall a\ge0;b\ge0\))
\(\Leftrightarrow\sqrt{x+2}=\sqrt{y}\)
\(\Rightarrow y=x+2\)
Thế vào pt dưới:
\(x^2+\left(x+3\right)\left(x+3\right)=x+16\)
\(\Leftrightarrow2x^2+5x-7=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=3\\x=-\dfrac{7}{2}< -2\left(loại\right)\end{matrix}\right.\)
Ta có: \(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2}+5\right)=5\\ \Leftrightarrow\left(x+\sqrt{x^2+5}\right)\left(\sqrt{x^2+5}-x\right)\left(y+\sqrt{y^2+5}\right)=5\left(\sqrt{x^2+5}-x\right)\\ \Leftrightarrow5\left(y+\sqrt{y^2+5}\right)=5\left(\sqrt{x^2+5}-x\right)\\ \Leftrightarrow x+y=\sqrt{x^2+5}-\sqrt{y^2+5}\left(1\right)\)Mặt khác:
\(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)=5\\ \Leftrightarrow\left(x+\sqrt{x^2+5}\right)\left(\sqrt{y^2+5}-y\right)\left(y+\sqrt{y^2+5}\right)=5\left(\sqrt{y^2+5}-y\right)\\ \Leftrightarrow5\left(x+\sqrt{x^2+5}\right)=5\left(\sqrt{y^2+5}-y\right)\\ \Leftrightarrow x+y=\sqrt{y^2+5}-\sqrt{x^2+5}\left(2\right)\)Cộng (1) và (2) theo vế ta có: \(x+y=0\)
ko pt đáp án