Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}x+2=a\\y-1=b\end{matrix}\right.\)
\(\left(a+\sqrt{a^2+1}\right)\left(b+\sqrt{b^2+1}\right)=1\)
\(\Rightarrow\left\{{}\begin{matrix}b+\sqrt{b^2+1}=\sqrt{a^2+1}-a\\a+\sqrt{a^2+1}=\sqrt{b^2+1}-b\end{matrix}\right.\)
\(\Rightarrow a+b+\sqrt{a^2+1}+\sqrt{b^2+1}=\sqrt{a^2+1}+\sqrt{b^2+1}-a-b\)
\(\Rightarrow a+b=0\)
\(\Rightarrow x+2+y-1=0\)
\(\Rightarrow x+y=-1\)
ĐKXĐ: \(x\ge-2;y\ge0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) pt đầu trở thành:
\(a\left(a^2+1\right)=b\left(ab+1\right)\)
\(\Leftrightarrow a^3+a=ab^2+b\)
\(\Leftrightarrow a^3-ab^2+a-b=0\)
\(\Leftrightarrow a\left(a^2-b^2\right)+a-b=0\)
\(\Leftrightarrow a\left(a-b\right)\left(a+b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+1\right)=0\)
\(\Leftrightarrow a-b=0\) (do \(a^2+ab+1>0;\forall a\ge0;b\ge0\))
\(\Leftrightarrow\sqrt{x+2}=\sqrt{y}\)
\(\Rightarrow y=x+2\)
Thế vào pt dưới:
\(x^2+\left(x+3\right)\left(x+3\right)=x+16\)
\(\Leftrightarrow2x^2+5x-7=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=3\\x=-\dfrac{7}{2}< -2\left(loại\right)\end{matrix}\right.\)
\(a,\dfrac{3}{5}-\dfrac{1}{2}\sqrt{1\dfrac{11}{25}}=\dfrac{3}{5}-\dfrac{1}{2}\sqrt{\dfrac{36}{25}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{\sqrt{6^2}}{\sqrt{5^2}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{6}{5}=\dfrac{3}{5}-\dfrac{6}{10}=\dfrac{3}{5}-\dfrac{3}{5}=0\)
\(b,\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)=5^2-\left(2\sqrt{6}\right)^2=25-2^2.\sqrt{6^2}=25-4.6=25-24=1\)
\(c,\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\\ =\left|2-\sqrt{3}\right|+\sqrt{\sqrt{3^2}-2\sqrt{3}+1}\\ =2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =2-\sqrt{3}+\left|\sqrt{3}-1\right|\\ =2-\sqrt{3}+\sqrt{3}-1\\ =1\)
\(d,\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\left(dk:x,y>0\right)\\ =\dfrac{\left(\sqrt{x^2}.\sqrt{y}+\sqrt{y^2}.\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\sqrt{x^2}-\sqrt{y^2}\\ =\left|x\right|-\left|y\right|\\ =x-y\)
\(\left(\sqrt{x^2+5}+x\right)\left(\sqrt{y^2+5}+y\right)=5\)
⇔ \(\left(\sqrt{x^2+5}+x\right)\left(\sqrt{x^2+5}-x\right)\left(\sqrt{y^2+5}+y\right)=5\left(\sqrt{x^2+5}-x\right)\) ⇔ \(5\left(\sqrt{y^2+5}+y\right)=5\left(\sqrt{x^2+5}-x\right)\)
⇔ \(x+y=\sqrt{x^2+5}-\sqrt{y^2+5}\left(1\right)\)
Tương tự : \(x+y=\sqrt{y^2+5}-\sqrt{x^2+5}\left(2\right)\)
Cộng từng vế của ( 1 ; 2 ) , ta có : x + y = 0
tính x+y chứ
Đặt \(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)=5\)là A
Nhân 2 vế A cho \(\sqrt{x^2+5}-x\)ta được:
\(5.\left(y+\sqrt{y^2+5}\right)=5.\left(\sqrt{x^2+5}-x\right)\)
\(\Leftrightarrow y+\sqrt{y^2+5}=\sqrt{x^2+5}-x\)
\(\Leftrightarrow x+y=\sqrt{x^2+5}-\sqrt{y^2+5}\left(1\right)\)
Nhân 2 vế A cho \(\sqrt{y^2+5}-y\) ta được:
\(5.\left(x+\sqrt{x^2+5}\right)=5.\left(\sqrt{y^2+5}-y\right)\)
\(\Leftrightarrow x+\sqrt{x^2+5}=\sqrt{y^2+5}-y\)
\(\Leftrightarrow x+y=\sqrt{y^2+5}-\sqrt{x^2+5}\left(2\right)\)
từ (1) và (2) suy ra:
\(x+y-\left(x+y\right)=\sqrt{x^2+5}-\sqrt{y^2+5}-\left(\sqrt{y^2+5}-\sqrt{x^2+5}\right)\)
\(\Leftrightarrow2\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right)=0\)
\(\Leftrightarrow\sqrt{x^2+5}-\sqrt{y^2+5}=0\)
\(\Rightarrow x+y=\sqrt{x^2+5}-\sqrt{y^2+5}=0\)