K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

x= ...... - ....... = a -b

P=(a-b)^3 + 3(a-b) +2018 = a^3-3a^2b+3ab^2-b^3 +3a-3b+2018

=a^3-b^3 -3a(ab-1) -3b(ab -1) +2018 = a^3-b^3 - 3(ab-1)(a+b) +2018

a.b = 1 => ab-1 =0 => P =a^3 -b^3 +2018=\(\sqrt{2}\)-1 -\(\frac{1}{\sqrt{2}-1}\)+2018

=\(\frac{2+1-2\sqrt{2}-1+2018\sqrt{2}-2018}{\sqrt{2}-1}\)=\(\frac{2016\sqrt{2}-2016}{\sqrt{2}-1}\)=2016

Vậy P=2016

11 tháng 8 2017

ai nay dung kinh nghiem la chinh

cau a)

ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)

\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)

khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)

\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)

\(x=\frac{3-1}{1}=2\)

suy ra 

x^3-4x+1=1

A=1^2018

A=1

b)

ta thay

\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)

khi do 

\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)

\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)

x=2

thay vao

x^3+3x-14=0

B=0^2018

B=0

13 tháng 11 2016

Đầu tiên là rút gọn P

P

\(=\frac{1}{\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}-\frac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{1x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)

\(\Rightarrow\frac{1}{P}=\frac{x-\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}-1+\frac{1}{\sqrt{x}}=-1+2008=2007\)

\(\Rightarrow P=\frac{1}{2007}\)

23 tháng 7 2017

Mọi người giúp mình với, 3 tiếng nữa phải đi học rồi