11^30 và 12.11^30
( So sánh )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: -11/30=-11/30
-4/15=-8/30
mà -11<-8
nên -11/30<-4/15
\(\dfrac{11}{10}< \dfrac{9}{30}\)
\(\dfrac{6}{7}>\dfrac{3}{5}\)
\(\dfrac{25}{100}< \dfrac{3}{4}\)
a \(\dfrac{11}{10}>\dfrac{3}{10}\)
b \(\dfrac{30}{35}>\dfrac{21}{35}\)
c \(\dfrac{1}{4}< \dfrac{3}{4}\)
Có : 30^11 < 32^11 = (2^5)11 = 2^55 (1)
Có : 18^15 > 16^15 = (2^4)15 = 2^60 (2)
Từ (1) và (2) suy ra 30^11 < 18^15.
Ta có:
-\(99^{20}=9^{20}\cdot11^{20}=9^{10}\cdot9^{10}\cdot11^{10}\cdot11^{10}=9^{10}\cdot\left(9^{10}\cdot11^{10}\cdot11^{10}\right)=9^{10}\cdot1089^{10}\)
-\(9^{10}\cdot11^{30}=9^{10}\cdot11^{10}\cdot11^{10}\cdot11^{10}=9^{10}\left(11^{10}\cdot11^{10}\cdot11^{10}\right)=9^{10}\cdot1331^{10}\)
Vì \(9^{10}\cdot1089^{10}< 9^{10}\cdot1331^{10}\)nên \(99^{20}< 9^{10}\cdot11^{30}\)
Vậy ....
\(5^{30}=\left(5^3\right)^{10}=125^{10}\)
Vì 12510>12410=>530>12410
a,
\(5^{30}\)và \(124^{10}\)
\(5^{30}=\left(5^3\right)^{10}=125^{10}\)
Vì \(125^{10}>124^{10}\)nên \(5^{30}>124^{10}\)
b, \(31^{11}\)và \(17^{14}\)
\(31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\)
\(17^{14}< 16^{14}=\left(2^4\right)^{14}=2 ^{56}\)
Vì \(2^{55}< 2^{56}\)nên \(31^{11}< 17^{14}\)
a) \(5^{36}\)= \(\left(5^3\right)^{12}\)= \(125^{12}\)
\(11^{24}\)= \(\left(11^2\right)^{12}\)= \(121^{12}\)
Vì \(125^{12}\)> \(121^{12}\)
Nên ..........................
b) tương tự :)
a)
\(7^{30}=\left(7^3\right)^{10}=343^{10}\)
\(3^{40}=\left(3^4\right)^{10}=81^{10}\)
mà \(343^{10}>81^{10}\)
=>\(7^{30}>3^{40}\)
b) 202^303 và 303^202
\(202^{303}=\left(202^3\right)^{100}=8242408^{100}\)
\(302^{202}=\left(302^2\right)^{100}=91204^{100}\)
\(8242408^{100}>91204^{100}
\)
202^303 > 303^202
1130 < 12,1130