K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

Đặt: \(x^2-6x+1=a;x^2+1=b\)

Khi đó đa thức này có dạng:

\(2a^2+5ab+2b^2=2a^2+4ab+ab+2b^2\)

\(=2a\left(a+2b\right)+b\left(a+2b\right)=\left(a+2b\right)\left(2a+b\right)\)

Thay lại a và b thì được:

\(\left(a+2b\right)\left(2a+b\right)=\left(x^2-6x+1+2x^2+2\right)\left(2x^2-12x+2+x^2+1\right)\)

\(=\left(3x^2-6x+3\right)\left(3x^2-12x+3\right)\)

\(=9\left(x-1\right)^2\left(x^2-4x+1\right)\)

Vậy ...

14 tháng 10 2021

a: \(x^2-2xy+y^2+3x-3y-4\)

\(=\left(x-y\right)^2+3\left(x-y\right)-4\)

\(=\left(x-y+4\right)\left(x-y-1\right)\)

 

 

6 tháng 1 2018

Ta có (6x+5)2(3x+2)(x+1)-35

= (36x2+60x+25)(3x2+5x+2)-35 (1)

Đặt a=3x2+5x+2

=> 12a+1= 12(3x2+5x+2)+1 =36x2+60x+25

Thay a=3x2+5x+2 vào (1) ta được

(12a+1).a-35=12a2+a-35

= 12a2-20a+21a-35

= 4a(3a-5)+7(3a-5)

= (3a-5)(4a+7) (2)

Thay 3x2+5x+2=a vào (2) ta được

(9x2+15x+6-5)(12x2+20x+8+7)

= (9x2+15x+1)(12x2+20x+15)

Ta có: \(\left(6x+5\right)^2\left(3x+2\right)\left(x+1\right)-35\)

\(=\left(36x^2+60x+25\right)\left(3x^2+5x+2\right)-35\)(1)

Đặt \(3x^2+5x+2=y\)

\(\left(1\right)=\left(12y+1\right)y-35\)

\(=12y^2+y-35\)

\(=\left(3y-5\right)\left(4y+7\right)\)

\(=\left(9x^2+15x+1\right)\left(12x^2+20x+15\right)\)

15 tháng 9 2021

\(A=4x^2+6x=2x\left(2x+3\right)\)

\(B=\left(2x+3\right)^2-x\left(2x+3\right)=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\)

\(C=\left(9x^2-1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1-3x+1\right)=2\left(3x+1\right)\)

\(D=x^3-16x=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\)

\(E=4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)

\(G=\left(2x+3\right)^2-\left(2x-3\right)^2=\left(2x+3-2x+3\right)\left(2x+3+3x-3\right)=6.4x=24x\)

15 tháng 9 2021

\(A=2x\left(2x+3\right)\\ B=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\\ C=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2\\ =\left(3x-1\right)\left(3x+1-3x+1\right)\\ =2\left(3x-1\right)\\ D=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\\ E=\left(2x-5y\right)\left(2x+5y\right)\\ G=\left(2x+3-2x+3\right)\left(2x+3+2x-3\right)\\ =24x\)

1) Đa thức\(\left(x^2+x+1\right)\left(X^2+x+2\right)\)-12 được phân tích thành nhân tử là:A)\(\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)B)\(\left(x^2+x-5\right)\left(x+2\right)\left(x-1\right)\)C)\(\left(x^2-x+5\right)\left(x+2\right)\left(x-1\right)\)D)\(\left(x^2+x+5\right)\left(x-2\right)\left(x+1\right)\)2) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\) được phân tích thành nhân tử...
Đọc tiếp

1) Đa thức\(\left(x^2+x+1\right)\left(X^2+x+2\right)\)-12 được phân tích thành nhân tử là:

A)\(\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

B)\(\left(x^2+x-5\right)\left(x+2\right)\left(x-1\right)\)

C)\(\left(x^2-x+5\right)\left(x+2\right)\left(x-1\right)\)

D)\(\left(x^2+x+5\right)\left(x-2\right)\left(x+1\right)\)

2) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\) được phân tích thành nhân tử là:

A)\(\left(x^2+5ax-5a^2\right)\left(x^2-5ax+5a^2\right)\)

B)\(\left(x^2-5ax-5a^2\right)\left(x^2+5ax+5a^2\right)\)

C)\(\left(x^2-5ax-5a^2\right)\left(x^2-5ax+5a^2\right)\)

D)\(\left(x^2+5ax+5a^2\right)^{^2}\)

3) Đa thức \(a^3+b^3+c^3-3abc\)  được phân tích thành nhân tử là:

A)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc-ca\right)\)

B)\(\left(a-b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

C)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

D)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc-ca\right)\)

4) Đa thức x(x+1)(x+2)(x+3)+1 được phân tích thành nhân tử là:

A)\(\left(x^2+3x+1\right)\left(x^2+3x-1\right)\)

B)\(\left(x^2+3x+1\right)^{^2}\)

C)\(\left(x^2+3x+1\right)\left(x^2-3x+1\right)\)

D) Cả B và C đều sai  

5) Câu trả lời đúng cho M=\(n^2\left(n+1\right)+2n\left(n+1\right)+360\) với \(n\in Z\)

A)M⋮4

B)M⋮5

C)M⋮6

D)M⋮9

6)Cho \(P=\left(2n+5\right)^{^2}-145\) với \(n\in N\)

A) P⋮4 ; B)P⋮3 ; C) P⋮5 ; D)P⋮6

7) Giá trị của biểu thức \(x^2-y^2-2y-1\) tại

x=502 ; y=497 là:

A) 3000

B)5000

C)4500

D) cả A và B đều sai 

 

 

 

2
AH
Akai Haruma
Giáo viên
29 tháng 1 2023

Bạn nên tách bài ra để đăng. Không nên đăng 1 loạt như thế này.

1) Đa thức\(\left(x^2+x+1\right)\left(X^2+x+2\right)\)-12 được phân tích thành nhân tử là:A)\(\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)B)\(\left(x^2+x-5\right)\left(x+2\right)\left(x-1\right)\)C)\(\left(x^2-x+5\right)\left(x+2\right)\left(x-1\right)\)D)\(\left(x^2+x+5\right)\left(x-2\right)\left(x+1\right)\) 2) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\) được phân tích thành nhân tử...
Đọc tiếp

1) Đa thức\(\left(x^2+x+1\right)\left(X^2+x+2\right)\)-12 được phân tích thành nhân tử là:

A)\(\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

B)\(\left(x^2+x-5\right)\left(x+2\right)\left(x-1\right)\)

C)\(\left(x^2-x+5\right)\left(x+2\right)\left(x-1\right)\)

D)\(\left(x^2+x+5\right)\left(x-2\right)\left(x+1\right)\)

 

2) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\) được phân tích thành nhân tử là:

A)\(\left(x^2+5ax-5a^2\right)\left(x^2-5ax+5a^2\right)\)

B)\(\left(x^2-5ax-5a^2\right)\left(x^2+5ax+5a^2\right)\)

C)\(\left(x^2-5ax-5a^2\right)\left(x^2-5ax+5a^2\right)\)

D)\(\left(x^2+5ax+5a^2\right)^{^2}\)

 

3) Đa thức \(a^3+b^3+c^3-3abc\)  được phân tích thành nhân tử là:

A)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc-ca\right)\)

B)\(\left(a-b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

C)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

D)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc-ca\right)\)

 

5) Câu trả lời đúng cho M=\(n^2\left(n+1\right)+2n\left(n+1\right)+360\) với \(n\in Z\)

A)M⋮4

B)M⋮5

C)M⋮6

D)M⋮9

 

6)Cho \(P=\left(2n+5\right)^{^2}-145\) với \(n\in N\)

A) P⋮4 ; B)P⋮3 ; C) P⋮5 ; D)P⋮6

7) Giá trị của biểu thức \(x^2-y^2-2y-1\) tại

x=502 ; y=497 là:

A) 3000

B)5000

C)4500

D) cả A và B đều sai 

 

 

 

1

1: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)

=(x^2+x)^2+3(x^2+x)-10

=(x^2+x+5)(x^2+x-2)

=(x^2+x+5)(x+2)(x-1)

2: \(=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)

\(=\left(x^2+5ax\right)^2+10a^2\left(x^2+5ax\right)+25a^2\)

\(=\left(x^2+5ax+5a^2\right)^2\)

3: \(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

5: \(M=\left(n+1\right)\left(n^2+2n\right)+360\)

=n(n+1)(n+2)+360 chia hết cho 6

6A

7D

28 tháng 9 2017

a)\(\left(x^2-x+2\right)^2+\left(x-2\right)^2=x^4+x^2+4-2x^3-4x+4x^2+x^2-4x+4\)

\(=x^4-2x^3+6x^2-8x+8=\left(x^4-2x^3+2x^2\right)+\left(4x^2-8x+8\right)\)

\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)=\left(x^2-2x+2\right)\left(x^2+4\right)\)

b)\(x^4+6x^3+7x^2-6x+1=\left(x^2\right)^2+\left(3x\right)^2+\left(-1\right)^2+2.x^2.3x\)+2.3x.(-1)+2.x2.(-1)

\(=\left(x^2+3x-1\right)^2\)