K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2015

50+9x=54,4+6,8x

<=>2,2x=4,4

<=>x=2

8 tháng 1 2017

\(\frac{x-1}{x^2-9x+20}+\frac{2x-2}{x^2-6x+8}+\frac{3x-3}{x^2-x-2}+\frac{4x-4}{x^2+6x+5}=0\)

\(\Leftrightarrow\frac{x-1}{\left(x-5\right)\left(x-4\right)}+\frac{2\left(x-1\right)}{\left(x-4\right)\left(x-2\right)}+\frac{3\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x+5\right)}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{10}{x^2-25}\right)=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)  

PS: Điều kiện xác đinh bạn tự làm nhé 

27 tháng 9 2017

a) Từ \(9x=3y=2z\) ta chia các vế cho 18 (là BCNN của 9, 3 và 2) ta được:

  \(\frac{9x}{18}=\frac{3y}{18}=\frac{2z}{18}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{6}=\frac{z}{9}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{6}=\frac{z}{9}=\frac{x-y+z}{2-6+9}=\frac{50}{5}=10\)

=> \(\frac{x}{2}=10\Rightarrow x=10.2=20\)

    \(\frac{y}{6}=10\Rightarrow y=10.6=60\)

  \(\frac{z}{9}=10\Rightarrow z=10.9=90\)

b) Đặt \(k=\frac{x}{5}=\frac{y}{2}=\frac{z}{-3}\)

=> \(x=5k\) ; \(x=2k\) ; \(z=-3k\)    (*)

Biết xyz = 240 => \(5k.2k.\left(-3k\right)=240\)

\(\Rightarrow-30k^3=240\)

\(\Rightarrow k^3=-8\)

\(\Rightarrow k=-2\)

Thay vào (*) ta được

\(x=5k=5.\left(-2\right)=-10\)

\(y=2k=-4\)

\(z=-3k=6\)

4 tháng 8 2020

a)\(\hept{\begin{cases}9x=3y=2z\\x-y+z=50\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{9}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}\\x-y+z=50\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{1}{9}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}=\frac{x-y+z}{\frac{1}{9}-\frac{1}{3}+\frac{1}{2}}=\frac{50}{\frac{5}{18}}=180\)

\(\Rightarrow\hept{\begin{cases}x=20\\y=60\\z=90\end{cases}}\)

b) Đặt \(\frac{x}{5}=\frac{y}{2}=\frac{z}{-3}=k\)

\(\Rightarrow\hept{\begin{cases}x=5k\\y=2k\\z=-3k\end{cases}}\)

xyz = 240 <=> 5k.2k.(-3)k = 240

                 <=> -30k3 = 240

                 <=> k3 = -8

                 <=> k3 = (-2)3

                 <=> k = -2

=> \(\hept{\begin{cases}x=-10\\y=-4\\z=6\end{cases}}\)

28 tháng 9 2019

2) \(\frac{1}{5}\sqrt{25x+50}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}\sqrt{25\left(x+2\right)}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}.\sqrt{25}.\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9\left(x+2\right)}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9}.\sqrt{x+2}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+3\sqrt{x+2}+9=0\)

\(\sqrt{x+2}-5\sqrt{x+2}+3\sqrt{x+2}+9=0\)

\(-\sqrt{x+2}=-9\)

\(x+2=81\)

\(\Rightarrow x=79\)

3) \(\sqrt{x^2-4x+4}=7x-1\)

\(\sqrt{x^2-2.x.2+2^2}=7x-1\)

\(\sqrt{\left(x-2\right)^2}=7x-1\)

\(x-2=7x-1\)

\(-2=7x-1-x\)

\(-2+1=7x-x\)

\(-1=6x\)

\(-\frac{1}{6}=x\)

\(\Rightarrow x=-\frac{1}{6}\)

12 tháng 5 2020

Ta có: \(A=9x+\frac{1}{9x}-\frac{6\sqrt{x}+8}{x+1}+2020\)

\(A=9x+\frac{1}{9x}-\frac{x+6\sqrt{x}+9}{x+1}+2021\)

\(A=9x+\frac{1}{9x}-\frac{\left(\sqrt{x}+3\right)^2}{x+1}+2021\)

Ta có \(9x+\frac{1}{9x}\ge\sqrt[2]{9x\cdot\frac{1}{9x}}=2\) (BĐT Cosi)

\(\left(1\cdot\sqrt{x}+3\cdot1\right)^2\le\left(1^2+3^2\right)\left[\left(\sqrt{x}\right)^2+1^2\right]=10\left(x+1\right)\)(BĐT Bunhiacopsky)

=> \(\frac{\left(\sqrt{x}+3\right)^2}{x+1}\le\frac{10\left(x+1\right)}{x+1}=10\)

\(\Rightarrow\frac{-\left(\sqrt{x}+3\right)^2}{x+1}\ge-10\)

=> A >= -2-10+2021=2013

Xử lý tiếp phần dấu "="

27 tháng 10 2021

ĐK: \(x+2\ge0\Leftrightarrow x\ge-2\)

\(3\sqrt{x+2}-\sqrt{x+2}-4\sqrt{x+2}=-10\)

\(-2\sqrt{x+2}=-10\)

\(\sqrt{x+2}=5\)

\(\left\{{}\begin{matrix}5\ge0\left(ld\right)\\x+2=25\end{matrix}\right.\)\(\Leftrightarrow x=23\left(n\right)\)

27 tháng 10 2021

https://hoc24.vn/cau-hoi/.2599809129005

a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)

\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)

\(\Leftrightarrow4\sqrt{x-3}=20\)

\(\Leftrightarrow x-3=25\)

hay x=28

b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7

9 tháng 7 2023

a)

\(\sqrt{9x^2}=12\\ < =>\left(\sqrt{9x^2}\right)^2=12^2\\ < =>9x^2=144\\ < =>x^2=16\\ < =>\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

b)

\(\sqrt{25x^2}=\left|-50\right|\\ < =>\sqrt{25x^2}=50\left(vì-50< 0\right)\)

\(< =>\left(\sqrt{25x^2}\right)^2=50^2\\ =>25x^2=2500\\ < =>x^2=100\\ < =>\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)

9 tháng 7 2023

a, x = 4

b, x = 10