cho x,y,z>0 và xyz=1
Tìm GTLN của \(A=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cm bai toan phu
a3+b3\(\ge ab\left(a+b\right)\)
ta co \(\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)
=>bai toan phu dung
=>\(a^3+b^3\ge ab\left(a+b\right)\)
=>a3+b3+1\(\ge ab\left(a+b+c\right)\)
=>A\(\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{z}{\left(x+y+z\right)}+\frac{x}{\left(x+y+z\right)}+\frac{y}{\left(x+y+z\right)}=1\)
MaxA=1<=>x=y=z=1
đầu tiên cần c/m x3+y3 >= xy(x+y) (chứng minh=biến đổi tương đương)
ta có x3+y3+1 >= xy(x+y)+1=xy(x+y)+xyz=xy(x+y+z)
=>1/(x3+y3+1) <= 1/xy(x+y+z)
tương tự với 2 phân thức còn lại rồi cộng lại
Sử dụng bất đẳng thức:
\(x^3+y^3\ge3xy\left(x+y\right)\)
Có: \(M=2018\left(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\right)\)
\(M\le2018\left(\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{xz\left(x+z\right)+xyz}\right)\)
\(M\le2018\left(\frac{xyz}{xy\left(x+y+z\right)}+\frac{xyz}{yz\left(x+y+z\right)}+\frac{xyz}{xz\left(x+y+z\right)}\right)\)
\(M\le2018\left(\frac{x+y+z}{x+y+z}\right)=2018\)
Vậy Max M=2018 khi x=y=z=1
Đặt \(^{\hept{\begin{cases}x=a^2\\y=b^2\\z=c^2\end{cases}}\Rightarrow abc=1}\)
\(\Rightarrow P=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)
ÁP DỤNG BĐT AM-GM :
\(a^2+b^2\ge2ab\)
\(b^2+1\ge2b\)
\(\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2}.\frac{1}{ab+b+1}\)
Tương tự \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}.\frac{1}{bc+c+1}\)
\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ac+a+1}\)
Cộng từng vế các bđt trên ta được
\(P\le\frac{1}{2}\)
Dấu "=" xảy ra khi x=y=z=1
Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}=\frac{\sqrt{3xy}}{xy}=\frac{\sqrt{3}}{\sqrt{xy}}\)
Tương tự cho 2 BĐT còn lại ta có:
\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}};\frac{\sqrt{1+z^3+x^3}}{xz}\ge\frac{\sqrt{3}}{\sqrt{xz}}\)
Cộng theo vế 3 BĐT trên ta có:
\(M\ge\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)=\sqrt{3}\cdot\left(\frac{\sqrt{x}}{\sqrt{xyz}}+\frac{\sqrt{y}}{\sqrt{xyz}}+\frac{\sqrt{z}}{\sqrt{xyz}}\right)\)
\(=\sqrt{3}\cdot\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\ge\sqrt{3}\cdot\frac{3\sqrt[3]{\sqrt{xyz}}}{1}=3\sqrt{3}\)
Khi \(x=y=z=1\)
x,y,z là số thực à khó đấy số dương thì mk còn làm đc
chứ số thực mk chịu
Biến đổi tương đương ta CM được BĐT sau: \(x^3+y^3\ge xy\left(x+y\right)\)
Ta có: \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}=\frac{z}{xyz\left(x+y+z\right)}\)
CM tương tự với các phân thức còn lại
Cộng vế theo vế các BĐT đó ta được:
\(A\le\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}=1\)
Vậy Max A=1 <=> x=y=z=1
Đề bài mâu thuẫn quá. Cả x,y,z đều lớn hơn 0 thì làm sao xyz = 0 được
Câu hỏi của Lâm Minh Anh - Toán lớp 9 - Học toán với OnlineMath
Dễ dàng chứng minh được với mọi \(x,y>0\) thì ta luôn có:
\(x^3+y^3\ge xy\left(x+y\right)\) \(\left(\text{*}\right)\)
Thật vậy, xét hiệu \(x^3+y^3-xy\left(x+y\right)=x^3-x^2y+-xy^2+y^3=x^2\left(x-y\right)-y^2\left(x-y\right)=\left(x-y\right)\left(x^2-y^2\right)\)
\(x^3+y^3-xy\left(x+y\right)=\left(x-y\right)^2\left(x+y\right)\ge0\) (vì \(\left(x-y\right)^2\ge0\) với mọi \(x,y\) và \(x+y>0\))
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(x-y=0\) \(\Leftrightarrow\) \(x=y\)
Vậy, bất đẳng thức \(\left(\text{*}\right)\) luôn đúng với mọi \(x,y>0\)
Do đó, từ \(\left(\text{*}\right)\) ta suy ra:
\(x^3+y^3+xyz\ge xy\left(x+y\right)+xyz\) (do \(x,y,z>0\))
\(\Leftrightarrow\) \(x^3+y^3+xyz\ge xy\left(x+y+z\right)\)
\(\Leftrightarrow\) \(x^3+y^3+1\ge xy\left(x+y+z\right)\) (do \(xyz=1\))
Khi đó, vì hai vế của bđt trên cùng dấu nên ta lấy nghịch đảo hai vế và đổi chiều bất đẳng thức, tức là:
\(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\) \(\left(1\right)\)
\(\Leftrightarrow\) \(\frac{1}{x^3+y^3+1}\le\frac{xyz}{xy\left(x+y+z\right)}\) (do \(xyz=1\))
\(\Leftrightarrow\) \(\frac{1}{x^3+y^3+1}\le\frac{z}{x+y+z}\)
Hoàn toàn tương tự với vòng hoán vị \(x\) \(\rightarrow\) \(y\) \(\rightarrow\) \(z\), ta cũng chứng minh được:
\(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\) \(\left(2\right)\) và \(\frac{1}{z^3+x^3+1}\le\frac{y}{x+y+z}\) \(\left(3\right)\)
Cộng từng vế \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\), ta được:
\(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(x=y=z=1\)
dễ mà bạn :))) gáy tí , sai thì thôi
\(P=\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{z^3}{\left(1+z\right)\left(1+x\right)}\)
\(=\frac{x^3\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}+\frac{y^3\left(1+x\right)}{\left(1+y\right)\left(1+x\right)\left(1+z\right)}+\frac{z^3\left(1+y\right)}{\left(1+x\right)\left(1+z\right)\left(1+y\right)}\)
\(=\frac{x^3\left(1+z\right)+y^3\left(1+x\right)+z^3\left(1+y\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{3\sqrt[3]{x^3y^3z^3\left(1+x\right)\left(1+y\right)\left(1+z\right)}}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
đến đây áp dụng BĐT phụ ( 1+a ) ( 1+b ) ( 1+c ) >= 8abc
EZ :)))
Ta đi c/m BĐT sau: \(x^3+y^3\ge xy\left(x+y\right)\) (*)
Thật vậy (*) \(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)(luôn đúng)
Áp dụng vào bài toán:
\(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y\right)+1}=\frac{1}{xy\left(x+y+z\right)}\)(Do xyz=1)
Tương tự: \(\frac{1}{y^3+z^3+1}\le\frac{1}{yz\left(x+y+z\right)};\frac{1}{z^3+x^3+1}\le\frac{1}{zx\left(x+y+z\right)}\)
\(\Rightarrow A\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)
Vậy Max A = 1. Dấu "=" xảy ra <=> x=y=z=1.