K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

\(\frac{3n-5}{n+4}\inℤ\Leftrightarrow3n-5⋮n+4\)

\(\Rightarrow3n+12-17⋮n+4\)

\(\Rightarrow3\left(n+4\right)-17⋮n+4\)

      \(3\left(n+4\right)⋮n+4\)

\(\Rightarrow17⋮n+4\)

\(\Rightarrow n+4\inƯ\left(17\right)=\left\{-1;1;-17;17\right\}\)

\(\Rightarrow n\in\left\{-5;-3;-21;13\right\}\)

2 tháng 9 2018

Để A nguyên thì :

3n - 5 : n + 4 ( dấu " : " là dấu chia hết )

3n + 4 - 9 : n + 4

mà 3n + 4 : n + 4

=> 9 : n + 4 => n + 4 thuộc Ư(9) = { 1; 3; 9; -1; -3; -9 }

Ta có bảng :

n+4139-1-3-9
n-3-15-5-7-13

Vậy,.......

20 tháng 3 2021

n có giá trị nhỏ nhất khi và chỉ khi 3n+2 có giá trj lớn nhất cứ theo thé mà làm bài

20 tháng 3 2021

Ta có: \(A=\frac{6n+9}{3n+2}=\frac{6n+4+5}{3n+2}=2+\frac{5}{3n+2}\)

Để \(A_{min}\)\(\Rightarrow\)\(2+\frac{5}{3n+2}min\)mà \(\hept{\begin{cases}2>0\\5>0\\n\inℤ\end{cases}}\)

\(\Rightarrow\)\(3n+2\)lớn nhất nhưng nguyên âm

\(\Rightarrow\)\(3n+2=-1\)\(\Leftrightarrow\)\(n=-1\)\(\left(TM\right)\)

Vậy để \(A_{min}\)\(\Leftrightarrow\)\(n=-1\)

22 tháng 10 2017

-7 nha bạn

-7 nha bạn

-7 nha bạn

22 tháng 10 2017

 Muốn A có giá trị nguyên thì 3n + 9 phải chia hết cho n - 4

=> 3n - 12 + 21 chia hết cho n - 4 

3n - 12 chia hết cho n - 4 với mọi n . Vậy 21 chia hết cho n - 4

=> n - 4 là Ư(21)

=> n-4 là Ư( 1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21 } 

Xét n - 4 = 1

      n = 1 + 4 = 5

Xét n - 4 = -1

      n = -1 + 4 = 3

Xét n - 4 = 3

      n = 3 + 4 = 7

Xét n - 4 = -3

       n = -3 + 4 = 1

Xét n - 4 = 7

       n = 7 + 4 = 11

Xét n - 4 = -7

       n = -7 + 4 = -3

Xét n - 4 = 21

      n = 21 + 4

      n = 25

Xét n - 4 = -21

      n = -21 + 4 = -17

Vậy n { 5 ; 3 ; 7 ; 1 ; 11 ; -3 ; 25 ; -17 }

Với n = 5 , ta có giá trị A = 24

Với n = 3 , ta có giá trị A = -18

Với n = 7 , ta có giá trị A = 10

Với n = 1 , ta có giá trị A = -4

Với n = 11 , ta có giá trị A = 6

Với n = -3 ; ta có giá trị A = 0

....

8 tháng 7 2016

\(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)

\(\Rightarrow n-4\inƯ\left(21\right)\Rightarrow n-4\in\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

\(\Rightarrow n\in\left\{-17;3;1;3;5;7;11;25\right\}\)

( giá trị là chỗ n-4 \(\in\){ -21;-7;...;21 } rồi + 3 nha bạn )

\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

\(\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{-1;1\right\}\)( vì 2n - 1 là số lẻ )

\(\Rightarrow n\in\left\{0;1\right\}\)

( giá trị là chỗ 2n-1 \(\in\){ -1;1 } rồi + 3 nha bạn )

8 tháng 7 2016
  • \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)

Để A nguyên thì \(\frac{21}{n-4}\) nguyên

=>21 chia hết cho n-4

=>n-4\(\in\)Ư(21)

=>n-4\(\in\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

=>n\(\in\left\{-17;-3;1;3;5;7;11;25\right\}\)(1)

  • \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)

Để B nguyên thì \(\frac{8}{2n-1}\) nguyên

=>8 chia hết cho 2n-1

=>2n-1\(\in\)Ư(8)

=>2n-1\(\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

=>2n\(\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)

=>n\(\in\left\{\frac{-7}{2};\frac{-3}{2};\frac{-1}{2};0;1;\frac{3}{2};\frac{5}{2};\frac{9}{2}\right\}\)

Vì n là số nguyên nên n\(\in\left\{0;1\right\}\)(2)

Từ (1) và (2) => n=1 thì A và B nguyên

n=1 => \(A=3+\frac{21}{n-4}=3+\frac{21}{1-4}=3+\frac{21}{-3}=3+\left(-7\right)=-4\)

           \(B=3+\frac{8}{2n-1}=3+\frac{8}{2.1-1}=3+\frac{8}{1}=3+8=11\)

Kết luận:n=1 thì A=-4 và B=11

7 tháng 5 2017

\(A=\frac{3n^2+25}{n^2+5}=\frac{3n^2+15}{n^2+5}+\frac{10}{n^2+5}=\frac{3\left(n^2+5\right)}{n^2+5}+\frac{10}{n^2+5}=3+\frac{10}{n^2+5}\)

Vì \(n^2\ge0\Rightarrow n^2+5\ge5\Rightarrow\frac{10}{n^2+5}\le2\Rightarrow A=3+\frac{10}{n^2+5}\le5\)

=>Amax=5 <=> n2=0 <=> n=0

Vậy GTLN của A là 5 tại n=0

7 tháng 5 2017

A=3n2+25/n2+5

a=3(n2+5)+20/n2+5

           20

a=3                           

       n2+5

thuộc U của  20 {1,2,4,5,,10,20}

thay n2=12+5=6

thay n2=2

tiep theo thay =4,=5,=10,=20 nha bn

24 tháng 3 2018

a)\(A=3-\frac{4}{3n+2}\)=>\(3n+2\)là ước của 4 =>\(n=0;n=-1;n=-2\)

29 tháng 4 2018

Ta có : 

Để \(A\in Z\)

\(\Leftrightarrow\frac{3n-5}{n+4}\in Z\)

\(\Leftrightarrow3n-5⋮n+4\)

\(\Leftrightarrow3n+12-17⋮n+4\)

\(\Leftrightarrow3\left(n+4\right)-17⋮n+4\)

\(\Leftrightarrow17⋮n+4\)

\(\Leftrightarrow n+4\inƯ\left(17\right)\)

\(\Leftrightarrow n+4\in\left\{1;-1;17;-17\right\}\)

\(\Leftrightarrow n\in\left\{-3;-5;13;-21\right\}\)

Chúc bạn học tốt !!!! 

29 tháng 4 2018

bạn giải thích sai rồi phải là:

để A có giá trị số nguyên

=> 3n-5 \(⋮\)n+4

DD
16 tháng 6 2021

a) \(A=\frac{3-n}{n+1}=\frac{4-1-n}{n+1}=\frac{4}{n+1}-1\inℤ\)mà \(n\inℤ\)suy ra \(n+1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)

\(\Leftrightarrow n\in\left\{-5,-3,-2,0,1,3\right\}\).

b) \(B=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\inℤ\)mà \(n\inℤ\)suy ra \(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)

\(\Rightarrow n\in\left\{-1\right\}\)

c) \(C\inℤ\Rightarrow3C=\frac{6n+3}{3n+2}=\frac{6n+4-1}{3n+2}=2-\frac{1}{3n+2}\inℤ\) mà \(n\inℤ\)suy ra 

.\(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)\(\Rightarrow n\in\left\{-1\right\}\)

Thử lại thỏa mãn.