|3-2x|+|4y+5|=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>3-2x =0 =>\(\orbr{\begin{cases}2x=3\\2x=-3\end{cases}}\)=>\(\orbr{\begin{cases}x=1.5\\x=-1.5\end{cases}}\)
=>4y+5=0=>4y=-5=>y=-1.25 Vậy x=1.5 hoặc x=-1.5 , y=-1.25
b: \(\Leftrightarrow\left\{{}\begin{matrix}x-7y=0\\11x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{11}\\y=\dfrac{x}{7}=\dfrac{5}{77}\end{matrix}\right.\)
Lời giải:
a. Bạn cần viết đề bằng công thức toán để đề được rõ ràng hơn.
b. Ta có:
$(7y-x)^{2020}\geq 0$ với mọi $x,y$
$|5-11x|^{2021}\geq 0$ với mọi $x,y$
Do đó để tổng của chúng bằng $0$ thì:
$(7y-x)^{2020}=|5-11x|^{2021}=0$
$\Leftrightarrow x=\frac{5}{11}; y=\frac{5}{77}$
a) x2 + y2 +2x - 4y + 5 = 0
( x2 + 2x + 1 ) + ( y2 - 4y + 4 ) = 0
( x + 1 )2 + ( y - 2 )2 = 0
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
b) \(x^2+4y^2-x-4y+\dfrac{5}{4}=0\)
\(x^2-x+\dfrac{1}{4}+4y^2-4y+1=0\)
\(\left(x-\dfrac{1}{2}\right)^2+\left(2y-1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\2y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)
a) Tọa độ giao điểm của hai đường thẳng \({d_1},{d_2}\) là nghiệm của hệ phương trình:
\(\left\{ \begin{array}{l}3x + 2y - 5 = 0\\x - 4y + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{9}{7}\\y = \frac{4}{7}\end{array} \right.\)
Hệ phương trình có nghiệm duy nhất nên 2 đường thẳng cắt nhau.
b) Tọa độ giao điểm của hai đường thẳng \({d_3},{d_4}\) là nghiệm của hệ phương trình:
\(\left\{ \begin{array}{l}x - 2y + 3 = 0\\ - 2x + 4y + 10 = 0\end{array} \right.\) .
Hệ phương trình vô nghiệm.nên 2 đường thẳng song song với nhau
c) Tọa độ giao điểm của hai đường thẳng \({d_5},{d_6}\) tương ứng với t thỏa mãn phương trình:
\(4\left( { - \frac{1}{2} + t} \right) + 2\left( {\frac{5}{2} - 2t} \right) - 3 = 0 \Leftrightarrow 0t = 0\) .
Phương trình này có nghiệm với mọi t. Do đó \({d_5} \equiv {d_6}\).
Xét Δ và d1, hệ phương trình: có vô số nghiệm (do các hệ số của chúng tỉ lệ nên Δ ≡ d1.
Xét Δ và d2, hệ phương trình: có nghiệm duy nhất (-1/5; 2/5) nên
Δ cắt d2 tại điểm M(-1/5; 2/5).
Xét Δ và d3, hệ phương trình: vô nghiệm
Vậy Δ // d3
1) \(x^3-x^2=4x^2-8x+4\)
\(\Leftrightarrow x^3-x^2-4x^2+8x-4=0\)
\(\Leftrightarrow x^2-5x^2+8x-4=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x.2+2^2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
a) \(X^2+5X< 0\)
<=> \(X\left(X+5\right)< 0\)
<=> TH1: \(x< 0;x+5>0\Leftrightarrow-5< x< 0\)
TH2: \(x>0;x+5< 0\Leftrightarrow0< x< -5\) (vô lí)
Vậy \(-5< x< 0\)
a/ l 3-2xl + l 4y+5 l =0
mà l 3-2x l \(\ge\)0
l 4y+5 l \(\ge\)0
=>l 3-2x l =0 và l 4y+5 l = 0
=>3-2x=0 và 4y+5=0
=>x=3/2 và y= -5/4
b/l 5x-3l +l2y-7l=0
mà ..
=>.. tự làm nhé
|3−2x|+|4y+5|=0|3−2x|+|4y+5|=0
⇒|3−2x|=0⇒|3−2x|=0 và |4y+5|=0|4y+5|=0
+) |3−2x|=0⇒3−2x=0⇒x=32|3−2x|=0⇒3−2x=0⇒x=32
+) |4y+5|=0⇒4y+5=0⇒y=54|4y+5|=0⇒4y+5=0⇒y=54
Vậy x=32;y=54