Cho 1 tứ giác PSRQ , có S=65 độ , R = 95 độ . Tính P, Q , gọi P, Q là x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất hình bình hành ta luôn có hai góc đối diện luôn bằng nhau .
Do đó : \(\widehat{P}=\widehat{R}=95^0\) và \(\widehat{Q}=\widehat{S}=65^0\)
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
A + 950 = 1800
A = 1800 - 950
A = 850
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
B + 650 = 1800
B = 1800 - 650
B = 1150
Diện tích hình vuông ABCD bằng 6.6 = 36 ( c m 2 )
Diện tích △ BEH bằng 1/2 .4.4 = 8 ( c m 2 )
Diện tích △ DKN bằng 1/2 .4.4 = 8 ( c m 2 )
Diện tích phần còn lại là: 36 - (8 + 8) = 20 ( c m 2 )
Trong tam giác vuông AEN, ta có:
E N 2 = A N 2 + A E 2 = 4 + 4 = 8 ⇒ EN = 2 2 (cm)
Trong tam giác vuông BHE, ta có:
E H 2 = B E 2 + B H 2 = 16 + 16 = 32 ⇒ EH = 4 2 (cm)
Diện tích hình chữ nhật ENKH bằng: 2 2 . 4 2 = 16 ( c m 2 )
Nối đường chéo BD. Theo tính chất đường thẳng song song cách đều ta có hình chữ nhật ENKH được chia thành 4 phần bằng nhau nên diện tích tứ giác PQRS chiếm 2 phần bằng 8 c m 2
Diện tích △ AEN bằng 1/2 .2.2 = 2 ( c m 2 )
Vậy S A E P S N = S A E N + S E P S N = 2 + 16/4 = 6 ( c m 2 )
1) Ta có:
• PQ là đường trung bình của ΔABC nên PQ // BC và PQ = BC/2 (1)
• RS là đường trung bình của ΔDBC nên RS // BC và RS = BC/2 (2)
Từ (1) và (2) suy ra PQ // RS và PQ = RS
Suy ra tứ giác PQRS là hình bình hành.
Đáp án A
Ký hiệu như hình vẽ. Đặt A B = B C = C D = D A = a ; S O = h
Suy ra S B = a 2 2 + h 2
Gọi M là trung điểm của SB
Trong (SBD) kẻ trung trực của SB cắt SO tại I
Vậy I là tâm mặt cầu ngoại tiếp khối chóp S.ABCD. Suy ra I S = R .
Hai tam giác vuông SMI và SOB đồng dạng ⇒ S I S B = S M S O ⇒ R = a 2 + 2 h 2 4 h với 0 < h < 2 R . Suy ra a 2 = 2 h 2 R − h .
Thể tích V của khối chóp là:
V = 1 3 a 2 h = 1 3 2 h 2 2 R − h = 8 3 h 2 h 2 2 R − h ≤ 8 3 h 2 + h 2 + 2 R − h 3 3 = 64 R 3 81
Vậy GTLN của V bằng 64 R 3 81 đạt được khi h 2 = 2 R − h ⇔ h = 4 R 3
Suy ra a = 4 R 3 .
b: Xét ΔABC có
M là trung điểm của BA
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành