Chứng minh rằng giá trị của biểu thức n(n + 5) - (n-3)(n+2) luôn chia hết cho 6 với mọi n là số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 A=xyz+xz-zy-z+xy+x-y-1
thay các gtri x=-9, y=-21 và z=-31 vào là đc
=> A=-7680
Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
b) 49n+77n-29n-1
=\(49^n-1+77^n-29^n\)
=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)
=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))
=> tích trên chia hết 48
c) 35x-14y+29-1=7(5x-2y)+7.73
=7(5x-2y+73) tích trên chia hết cho 7
=. ĐPCM
\(A=a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36\)
\(A=a\left(a+6\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+1\right)+36\)
\(A=\left(a^2+6a\right)\left(a^2+6a+8\right)\left(a^2+6a+5\right)+36\)
Đặt t = a2 +6a. Khi đó phương trình trở thành:
\(A=t\left(t+8\right)\left(t+5\right)+36\)
\(A=t\left(t^2+13t+40\right)+36\)
\(A=t^3+13t^2+40t+36\)
\(A=t^3+2t^2+11t^2+22t+18t+36\)
\(A=t^2\left(t+2\right)+11t\left(t+2\right)+18\left(t+2\right)\)
\(A=\left(t+2\right)\left(t^2+11t+18\right)\)
\(A=\left(t+2\right)\left(t^2+2t+9t+18\right)\)
\(A=\left(t+2\right)\left[t\left(t+2\right)+9\left(t+2\right)\right]\)
\(A=\left(t+2\right)\left(t+2\right)\left(t+9\right)\)
\(A=\left(t+2\right)^2\left(t+9\right)\)
Thế t = a2 + 6a vào A ta được:
\(A=\left(a^2+6a+2\right)^2\left(a^2+6a+9\right)\)
\(A=\left(a+3\right)^2\left(a^2+6a+2\right)^2\)
\(A=\left[\left(a+3\right)\left(a^2+6a+2\right)\right]^2\)
Vậy với mọi số nguyên a thì giá trị của biểu thức A luôn là một số chính phương
a) \(A=n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)
Với mọi n nguyên thì A là tích của 3 số nguyên liên liếp nên A chia hết cho 3. ĐPCM
b) A chia hết cho 3 với mọi n nguyên. Vì vậy, để A chia hết cho 15 thì A sẽ chia hết cho 5.
Các giá trị nguyên dương nhỏ hơn 10 của n là: 3;4;5;8;9
a) A = n3 +3n2 + 2n
A = n3 + n2 + 2n2 + 2n
A = n2.( n+1) + 2n.(n+1)
A = (n+1).(n2+2n)
A = (n+1).n.(n+2)
A = n.(n+1).(n+2)
Vì n.(n+1).(n+2) là tích 3 số nguyên liên tiếp nên n.(n+1).(n+2) chia hết cho 3
=> A chia hết cho 3
Chứng tỏ A chia hết cho 3 với mọi n nguyên
b) Ta có: 15 = 3.5
Mà (3,5)=1, A chia hết cho 3 nên ta phải tìm n nguyên dương để A chia hết cho 5
Do A = n.(n+1).(n+2) nên để A chia hết cho 5 thì trong 3 số n;n+1;n+2 có 1 số chia hết cho 5
Mặt khác n<10 nên n<n+1<n+2<12
Ta có các nhóm số thỏa mãn là: 3.4.5 ; 4.5.6 ; 5.6.7 ; 8.9.10 ; 9.10.11
Vậy các giá trị của n tìm được là: 3;4;5;8;9
Bài 1:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
Ta có A= 5n^3+15n^2+10n=5n^3+5n^2 +10n62+10n
=5n^29 (n+1)+10n (n+1) =(n+1).(5n^2+10n)
5n (n+1).(n+2)
do n (n=1) (n+2)chia hết cho 6
suy ra Achia hết cho 30(n thuộc z)
Ngọc Anh
Ta có :
n (2n - 3 ) - 2n ( n + 1 )
= 2n2 - 3n - 22 - 2n
= -5n luôn chia hết cho 5 với mọi n thuộc Z
Vậy n (2n - 3) - 2n (n + 1 ) luôn chia hết cho 5 với mọi số nguyên n
Ta có:
n(2n-3)-2n(n+1)
=2n2-3n-22-2n
=-5n luôn chia hết cho 5 với mọi n thuộc Z
Vậy n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-\left(n^2-3n+2n-6\right)\)
\(=n^2+5n-n^2+3n-2n+6\)
\(=\left(n^2-n^2\right)+\left(5n+3n-2n\right)+6\)
\(=6n+6\)
\(=6\left(n+1\right)⋮6\forall n\in Z\left(đpcm\right)\)
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6=6\left(n+1\right)\)
Ta thấy \(6\left(n+1\right)⋮6\forall n\in Z\Rightarrow n\left(n+5\right)-\left(n-3\right)\left(n+2\right)⋮6\forall n\in Z\)