Cho 2 số hữu tỉ x < y. Chứng tỏ rằng luôn tìm được 1 số m thuộc Q sao cho x < m < y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để x là số dương thì -4n+3>0
hay \(n< \dfrac{3}{4}\)
b: Để x là số âm thì -4n+3<0
hay \(n>\dfrac{3}{4}\)
a: Để x là số dương thì -4n>0
hay n<0
b: Để x là số âm thì -4n<0
hay n>0
c: Để x=0 thì -4n=0
hay n=0
a, Ta có x là số hữu tỉ dương tức là : \(\frac{a-4}{a^2}>0\) hay a > 4
b, Ta có : x là số hữu tỉ âm tức là : \(\frac{a-4}{a^2}< 0\)hay a < 4
c, Ta có : x không là số hữu tỉ dương cũng không là số hữu tỉ âm suy ra x = 0 hay \(\frac{a-4}{a^2}=0\)hay a = 4
a; Để x là số dương
=> a - 3 / 2 > 0 => a - 3 > 0 => a > 3
VẬy a > 3 => x dương
b; x la số âm
=> a - 3 / 2 < 0 => a - 3< 0 => a < 3
VẬy a < 3 => x âm
c,X không phải sô hữu tỉ âm và dương => a - 3 / 2 = 0
=> a - 3 = 0 => a = 3
Vậy a = 0 thì .........
Đúng cho mình nha
Lời giải:
Đặt $x+\frac{2}{3}=\frac{a}{b}$ với $a,b$ là số nguyên, $b\neq 0$
$\Rightarrow x=\frac{a}{b}-\frac{2}{3}=\frac{3a-2b}{3b}$
Thấy rằng $3a-2b\in\mathbb{Z}$ với mọi $a,b$ nguyên, $3b\in\mathbb{Z}\neq 0$ với mọi số nguyên $b$ khác $0$
$\Rightarrow x$ là số hữu tỉ.