\(\left(2x+1\right)^4=\left(2x+1\right)^6\)
giúp tui với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(\left\{{}\begin{matrix}3x-2y=4\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2\left(5-2x\right)=4\\y=5-2x\end{matrix}\right.\)\(\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3x-10+4x=4\\y=5-2x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=14\\y=5-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy nghiệm duy nhất của hpt là: (2;1)
c) \(\left\{{}\begin{matrix}2y-x=2\\2x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-2\\2\left(2y-2\right)-y=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-2\\4y-4-y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-2\\3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Vậy nghiệm duy nhất của hpt là: (0;1)
a) \(\left\{{}\begin{matrix}x+2y=2\left(1\right)\\-2x+y=1\left(2\right)\end{matrix}\right.\)
Từ (1): \(x=2-2y\) (3)
Thế (3) vào (2), ta được: \(-2\left(2-2y\right)+y=1< =>-4+4y+y=1\)
\(\Leftrightarrow y=1\)\(\Rightarrow\)\(x=2-2.1=0\)
Vậy nghiệm duy nhất của hpt là: (0;1)
\(1.\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}.\Leftrightarrow\dfrac{x-1-3x}{3}=\dfrac{x-2}{2}.\Leftrightarrow\dfrac{-2x-1}{3}-\dfrac{x-2}{2}=0.\)
\(\Leftrightarrow\dfrac{-4x-2-3x+6}{6}=0.\Rightarrow-7x+4=0.\Leftrightarrow x=\dfrac{4}{7}.\)
\(2.\left(x-2\right)\left(2x-1\right)=x^2-2x.\Leftrightarrow\left(x-2\right)\left(2x-1\right)-x\left(x-2\right)=0.\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1-x\right)=0.\Leftrightarrow\left(x-2\right)\left(x-1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=1.\end{matrix}\right.\)
\(3.3x^2-4x+1=0.\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{3}\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=\dfrac{1}{3}.\end{matrix}\right.\)
\(4.\left|2x-4\right|=0.\Leftrightarrow2x-4=0.\Leftrightarrow x=2.\)
\(5.\left|3x+2\right|=4.\Leftrightarrow\left[{}\begin{matrix}3x+2=4.\\3x+2=-4.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}.\\x=-2.\end{matrix}\right.\)
\(1,\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\\ \Leftrightarrow\dfrac{x-1}{3}-x=\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{2\left(x-1\right)-6x}{6}=\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow2\left(x-1\right)-6x=3\left(x-2\right)\\ \Leftrightarrow2x-2-6x=3x-6\\ \Leftrightarrow-4x-2=3x-6\)
\(\Leftrightarrow3x-6+4x+2=0\\ \Leftrightarrow7x-4=0\\ \Leftrightarrow x=\dfrac{4}{7}\)
\(2,\left(x-2\right)\left(2x-1\right)=x^2-2x\\ \Leftrightarrow2x^2-4x-x+2=x^2-2x\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(3,3x^2-4x+1=0\\ \Leftrightarrow\left(3x^2-3x\right)-\left(x-1\right)=0\\ \Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(4,\left|2x-4\right|=0\\ \Leftrightarrow2x-4=0\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
\(5,\left|3x+2\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
\(6,\left|2x-5\right|=\left|-x+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=-x+2\\2x-5=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=3\end{matrix}\right.\)
1) (x - 2)2 - (x - 3)(x + 3) = 17
=> x2 - 4x + 4 - x2 + 9 = 17
=> -4x = 17 - 13
=> -4x = 4
=> x = -1
2) TTT
3) x2 + 6x - 147 = 0
=> x2 + 19x - 13x - 147 = 0
=> x(x + 19) - 13(x + 19) = 0
=> (x - 13)(x + 19) = 0
=> \(\orbr{\begin{cases}x-13=0\\x+19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=13\\x=-19\end{cases}}\)
4) (3x - 5)(2x + 3) - 6x2 = 7
=> 6x2 + 9x - 10x - 15 - 6x2 = 7
=> -x - 15 = 7
=> -x = 7 + 15
=> -x = 22
=> x = -22
5) TL
1) Ta có: \(\left(3-x^2\right)+6-2x=0\)
\(\Leftrightarrow3-x^2+6-2x=0\)
\(\Leftrightarrow-x^2-2x+9=0\)
\(\Leftrightarrow x^2+2x-9=0\)
\(\Leftrightarrow x^2+2x+1=10\)
\(\Leftrightarrow\left(x+1\right)^2=10\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{10}\\x+1=-\sqrt{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{10}-1\\x=-\sqrt{10}-1\end{matrix}\right.\)
Vậy: \(S=\left\{\sqrt{10}-1;-\sqrt{10}-1\right\}\)
2) Ta có: \(5\left(2x-1\right)+7=4\left(2-x\right)+2\)
\(\Leftrightarrow10x-5+7=8-4x+2\)
\(\Leftrightarrow10x+4x=8+2+5-7\)
\(\Leftrightarrow14x=8\)
\(\Leftrightarrow x=\dfrac{4}{7}\)
Vậy: \(S=\left\{\dfrac{4}{7}\right\}\)
a. \(5^{4-x}+1=26\)
\(\Leftrightarrow5^{4-x}=26-1=25\)
\(\Leftrightarrow5^{4-x}=5^2\)
\(\Leftrightarrow4-x=2\)
\(\Leftrightarrow x=2\)
b. \(\left(\frac{2}{x}+1\right)^{2x}=5^{2x}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{x}+1=5\\\frac{2}{x}+1=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{x}=4\\\frac{2}{x}=-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{3}\end{cases}}\)
c. \(\left(1-2x\right)^4-\left(1-2x\right)^6=0\)
\(\Leftrightarrow\left(1-2x\right)^4.\left[1-\left(1-2x\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(1-2x\right)^4=0\\1-\left(1-2x\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}1-2x=0\\\left(1-2x\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=1\\2x=0hoac2x=-2\end{cases}}\)
\(\Leftrightarrow x=\frac{1}{2},x=0,x=-1\)
ko ai giải đc à, giúp mk đi mà mau lên đang cần gấp, please
RẤT nhieu bn giai dc vi các pt này dễ nhung k ai giai vi nó dài ,làm mệt mà kè nhờ vả k biet ơn, k coi trọng chât xám
toàn là h tảo lao nên ng tài k dc trọng dụng , kẻ bât tai thi k giai dc, bởi z ng tài chỉ xem bài nào khó, k dài thi giai, dc kdc h cũng k cần
\(\left(2x+1\right)^4=\left(2x+1\right)^6\)
Đặt 2x + 1 = a, ta có
\(a^4=a^6\)
\(\Rightarrow a^4-a^6=0\)
\(\Rightarrow a^4\left(1-a^2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a^4=0\\1-a^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\a^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\2x+1=1\\2x+1=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-1\\2x=0\\2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=0\\x=-1\end{matrix}\right.\)
\(\left(2x+1\right)^4=\left(2x+1\right)^6\)
\(\Rightarrow\left(2x+1\right)^4-\left(2x+1\right)^6=0\)
\(\Rightarrow\left(2x+1\right)^4.\left[\left(2x+1\right)^2-1\right]0\)
\(\Rightarrow\left[{}\begin{matrix}\left(2x+1\right)^4=0\\\left[\left(2x+1\right)^2-1\right]=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x+1=0\\\left(2x+1\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=0\end{matrix}\right.\)
\(\Rightarrow\left\{x_1=\dfrac{-1}{2};x_2=0\right\}\)