K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2018

\(2A=2+2^2+...+2^{10}\)

\(2A-A=\left(2+2^2+...+2^{10}\right)-\left(1+2+...+2^9\right)\)

\(A=2^{10}-1=1023\)

mà \(5\cdot2^8=1280\Rightarrow A< 5\cdot2^8\)

30 tháng 8 2018

A = 1 + 2+22+23+...+29

2A = 2 + \(2^2+2^3+2^4+...+2^{10}\)

\(-\)

 \(A=1+2+2^2+2^3+...+2^9\)

 \(A=\)\(1-2^{10}\)

KL= tự so sánh nha

31 tháng 10 2016

a) S= 1+2+22+...+29

2S=2+22+23+...+210

2S-S=(2+22+23+...+210)-(1+2+23+...+29)

S=210-1

5.28=2.2+1.28=1+22.28=1+210

=>S=5.28

b) A=1+2+22+....+2100

2A=2+22+23+...+2101

2A-A=(2+22+23+...+2101)-(1+2+22+...+2100)

A=2101-1

=> A<2101

8 tháng 7 2015

A=210-1<210+28=22.28+1.28=(22+1).28=5.28=B

=>A<B

 

12 tháng 10 2016

mkkhoong hỉu

5 tháng 6 2016

2S=2(1+2+22+23+..+29)

2S=2+22+...+210

2S-S=(2+22+...+210)-(1+2+22+23+..+29)

S=210-1 (tới đây tách ra làm như Trinh Hai Nam)

5 tháng 6 2016

S=210-1  

5.28=210.1.25  

Vậy S < 5.28

7 tháng 3 2017

A = 1 + 2 + 22 + ...... + 29

2A = 2(1 + 2 + 22 + ...... + 29)

= 2 + 22 + 23 + ....... + 210

2A - A = (2 + 22 + 23 + ....... + 210) - (1 + 2 + 22 + ...... + 29)

A = 210 - 1

B = 5.28 = (22 + 1).28 = 22.28 + 1.28 = 210 + 28 > 210 - 1

Do đó B > A

7 tháng 3 2017

A = 1 + 2 + 2+ 2+ ... + 29

\(\Rightarrow\)2A = 2 + 22 + 23 + ... + 210 

\(\Rightarrow\)2A - A = ( 2 + 2+ 2+ ... + 210 ) - ( 1 + 2 + 22 + 23 + ... + 2)

\(\Rightarrow\)A = 2 + 22 + 2+ ... + 210 - 1 - 2 - 22 - 2- ... - 29

A = 210 - 1 

Ta có : ( 4 + 1 ).28 = 4.2+ 2= 28.28 + 28 = 210 + 28 

\(\Rightarrow\)210 - 1 < 210 + 2hay

A > B . 

28 tháng 12 2015

\(2S=2+2^2+2^3+2^4+...+2^{10}\)

=> \(2S-S=\left(2+2^2+2^3+2^4+...+2^{10}\right)-\left(1+2+2^2+2^3+...+2^9\right)\)

=> \(S=2^{10}-1=1024-1=1023\)

Mà \(5.2^8=5.256=1280\)

Vì 1023 < 1280

=> \(S<5.2^8\).

28 tháng 12 2015

Ta có : 

2S=2+2^2+2^3+...+2^10

2S-S=2+2^2+2^3+...+2^10-1-2-2^2-...-2^9

S=2^10-1

=>S<2^10           (1)

Ta lại có : 

5.2^8>2^10               (2)

Tu (1) va (2) suy ra : S<5.2^8

****

16 tháng 10 2018

\(S=1+2+2^2+2^3+....+2^8+2^9.\)

\(\Rightarrow2S=\text{​​}2+2^2+2^3+....+2^8+2^9+2^{10}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+....+2^8+2^9+2^{10}\right)-\left(1+2+2^2+2^3+....+2^8+2^9\right)\)

\(S=2^{10}-1=1024-1=1023< 5\cdot2^8=5\cdot256=1280\)

16 tháng 10 2018

+) Bước 1: Rút gọn S. Ta có: S=\(2^{10}-1\)

+) Bước 2: So sánh.

Ta có: \(2^{10}-1\)\(< 2^{10}=4\cdot2^8< 5\cdot2^8=>2^{10}-1< 2^8\cdot5\left(đpcm\right)\)

HẾT!

28 tháng 9 2015

Cho S = 1+2+22+23+...+29

=> 2S = 2+22+23+...+29+210

=> 2S - S = S = 210 - 1 = 28 . 22 - 1 = 28 . 4 - 1

Ta có 5 . 28 = 4 . 28 + 28

Vì 1 < 28  nên S < 5 . 28

19 tháng 7 2017

a) Ta có: 2003^152>2003^20>199^20

Vậy 2003^152>199^20

b) Ta có: 3^39=(3^13)^3=1594323^3

11^21=(11^7)^3=19487171^3

Vì 1594323^3<19487171^3 nên 3^39<11^21

19 tháng 7 2017

cảm ơn linh nhoa.....