23 + 04 + 20004 = ?
18 + 12 + 2004 = ?
11 + 08 + 2004 = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
=> \(\dfrac{4\left(bk\right)^4+5b^4}{4\left(dk\right)^4+5d^4}=\dfrac{b^4\left(4k^4+5\right)}{d^4\left(4k^4+5\right)}=\dfrac{b^4}{d^4}\)(1)
\(\dfrac{a^2b^2}{c^2d^2}=\dfrac{k^2b^2b^2}{k^2d^2d^2}=\dfrac{b^4}{d^4}\)(2)
Từ (1) và (2) suy ra: \(\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{a^2b^2}{c^2d^2}\)
b.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
=> \(\dfrac{\left(bk\right)^{2004}-b^{2004}}{\left(bk\right)^{2004}+b^{2004}}=\dfrac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\) (1)
\(\dfrac{\left(dk\right)^{2004}-d^{2004}}{\left(dk\right)^{2004}+d^{2004}}=\dfrac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\) (2)
Từ (1) và (2) suy ra: \(\dfrac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\dfrac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{4b^4k^4+5b^4}{4d^4k^4+5d^4}=\dfrac{b^4\left(4k^4+5\right)}{d^4\left(k^4+5\right)}=\dfrac{b^4}{d^4}\\\dfrac{a^2b^2}{c^2d^2}=\dfrac{bk^2b^2}{dk^2d^2}=\dfrac{k^2b^4}{k^2d^4}=\dfrac{b^4}{d^4}\end{matrix}\right.\)
Vậy.....
\(\left\{{}\begin{matrix}\dfrac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\dfrac{b^{2004}k^{2004}-b^{2004}}{b^{2004}k^{2004}+b^{2004}}=\dfrac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\\\dfrac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}=\dfrac{d^{2004}k^{2004}-d^{2004}}{d^{2004}k^{2004}+d^{2004}}=\dfrac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\end{matrix}\right.\)
Vậy....
a.\(\frac{13}{15}< \frac{23}{25}\)
a.\(\frac{25}{18}>\frac{24}{27}\)
c.\(\frac{25}{78}< \frac{24}{27}\)
d.\(\frac{13}{15}< \frac{133}{153}\)
e.\(\frac{2003}{2004}+\frac{2004}{2005}< 2003+\frac{2004}{2004}+2003\)
1.\(a,\)Ta có: \(1-\frac{13}{15}=\frac{2}{15};1-\frac{23}{25}=\frac{2}{25}\)
Mà \(\frac{2}{15}>\frac{2}{25}\)
Vì nếu cùng số bị trừ, số trừ càng lớn thì thương cang nhỏ và ngược lại. Do cùng bị 1 trừ nên \(\frac{13}{15}< \frac{23}{25}\)
\(b,\)Ta có: \(\frac{24}{27}=\frac{8}{9}=\frac{16}{18}\)
Mà \(\frac{25}{18}>\frac{16}{18}\)
Nên \(\frac{25}{18}>\frac{24}{27}\)
\(c,\)Ta có: \(\frac{24}{27}=\frac{8}{9}\)
Và \(\frac{25}{78}=\frac{25.9}{78.9};\frac{8}{9}=\frac{8.78}{9.78}\)
Mà \(25.9=25\left(8+1\right)=25.8+25< 8.78\)
Nên \(\frac{25}{78}< \frac{8}{9}=\frac{24}{27}\)
\(d,\)Ta có: \(1-\frac{13}{15}=\frac{2}{15}=\frac{20}{150}\)
\(1-\frac{133}{153}=\frac{20}{153}>\frac{20}{150}=\frac{2}{15}\)
Vì nếu cùng số bị trừ, số trừ càng lớn thì thương cang nhỏ và ngược lại. Do cùng bị 1 trừ nên \(\frac{133}{153}< \frac{13}{15}\)
2. Ta có: \(\frac{2003+2004}{2004+2003}=\frac{2007}{2007}=1\)
Còn tiếp nữa thì bạn tự giải nha! chỉ cần so sánh 2003/2004+2004/2005 với 1 thôi!
Bn lấy máy tính mà cộng nha
K mk nhé m.n
Mk cần người đổi k
Ai đổi nhắn mk nha
\(23+04+20004\)
\(=27+20004\)
\(=20031\)
\(18+12+2004\)
\(=30+2004\)
\(=2034\)
\(11+08+2004\)
\(=19+2004\)
\(=2023\)