So sánh A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{98^2}+\frac{1}{99^2}\) và B=\(\frac{304}{1975}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)
\(B=\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)+...+\left(1+\frac{98}{2}\right)+1\)
\(B=\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}\)
\(B=100\left(\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}\right)\)
Ta có: \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}=\frac{1}{100}\)
Vậy...
P/s: Hoq chắc
#)Giải :
\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)
\(B=1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+...+\left(\frac{98}{2}+1\right)\)
\(B=\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}\)
\(B=100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}=100\)
Đặt \(A=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)
\(A=\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+...+\left(\frac{98}{2}+1\right)+1\) ( 99/1 = 99, tất cả 98 ( không tính 99/1) hạng tử trong A đều cộng với 1 , dư ra 1 chỗ cuối)
\(A=\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}+\frac{100}{100}\) ( 100/100=1)
\(A=100.\left(\frac{1}{2}+...+\frac{1}{97}+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)\)
Thay A vào E, có:
\(E=\frac{100.\left(\frac{1}{2}+...+\frac{1}{97}+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(E=100\)
\(\Rightarrow E=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+....+\frac{98}{2}+1+1+...+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\) ( Có 99 số 1)
\(\Rightarrow\frac{\frac{1}{99}+1+\frac{2}{98}+\frac{3}{97}+1+...+\frac{98}{2}+1+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)(Nhóm 98 số 1 với 98 phân số đầu ở trên tử)mik viết thiếu nha sorry *-*
\(\Rightarrow E=\frac{\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(\Rightarrow E=\frac{\frac{100}{2}+\frac{100}{3}+\frac{100}{4}+...+\frac{100}{99}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(\Rightarrow E=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(\Rightarrow E=\frac{100.1}{1}=100\)
~Chúc bạn hok tốt~
A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
A < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
A < 1 - \(\frac{1.}{100}\)
A < \(\frac{99}{100}< \frac{199}{100}\)
=> A < \(\frac{199}{100}\)
b,
S = \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{99}{10^2}\)
S = \(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{9.11}{10.10}\)
S = \(\frac{1.3.2.4.3.5.4.6.5.7...9.11}{2.2.3.3.4.4...10.10}\)
S = \(\frac{1.2.3^2.4^2.5^2...9^2.10.11}{2^2.3^3.4^2...10^2}\)
S = \(\frac{1.11}{2.10}\)
S = \(\frac{11}{20}\)
\(A=\frac{\frac{98}{2}+1+\frac{97}{3}+1+.....+\frac{2}{98}+1+\frac{1}{99}+1+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{99}+\frac{1}{100}}=\frac{\frac{100}{2}+\frac{100}{3}+........+\frac{100}{98}+\frac{100}{99}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{99}+\frac{1}{100}}\)
\(=\frac{100\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}{\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}=100\)
Phân tích mẫu ta có
99/1 + 98/2 +...+1/99 = (98/2 + 1) + (97/3 + 1) +...+(1/99 + 1) +99/1 - 99
( cộng 1 vào mỗi phân số trừ 99/1 do đó phải trừ đi 99 để vẵn được đẳng thức đó)
= 100/2 +100/3 +...+100/99 = 100. (1/2 +1/3 +...+1/99)
Do đó B = [100. (1/2 +1/3 +...+1/99)]/(1/2 +1/3 +..1/99) =100
Phân tích mẫu ta có
99/1 + 98/2 +...+1/99 = (98/2 + 1) + (97/3 + 1) +...+(1/99 + 1) +99/1 - 99
( cộng 1 vào mỗi phân số trừ 99/1 do đó phải trừ đi 99 để vẵn được đẳng thức đó)
= 100/2 +100/3 +...+100/99 = 100. (1/2 +1/3 +...+1/99)
Do đó B = [100. (1/2 +1/3 +...+1/99)]/(1/2 +1/3 +..1/99) =100
Gợi ý :
a ) Tách số 19 ra 19 số 1
Nhóm ở trên tử , mỗi số hạng cộng với 1
=> ...
b ) Tách số 99 ở mẫu thành 99 số 1
Nhóm ở dưới mẫu , mỗi số hạng cộng với 1
=> ...
Chúc học tốt !!!