cho tam giác cân ABC ( AB=AC). từ trung diểm M của BC vẽ ME vuống góc với AC và MF vuông góc vói AC. CHỨng minh
a. tam giác ABC= tam giác CFM
b.AE=AF
c.AM là tia phân giác của EMF
d. so sánh MC và ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét AMB và AMC
ta có: AB=AC ( vì ABC cân tại A )
BM=MC ( vì AM là đường trung tuyến )
AM: cạnh chung
Suy ra: AMB = AMC ( c.c.c )
AB = AC => Tam giác ABC cân tại A
a. Xét tam giác AMB và tam giác AMC
AB = AC ( gt )
Góc B = góc C ( ABC cân )
BM = CM ( gt )
Vậy...... ( c.g.c)
=> góc BAM = góc CAM ( 2 góc tương ứng )
=> AM là phân giác góc A
b. trong tam giác cân ABC đường phân giác cũng là đường cao
=> AM vuông BC
c.tam giác MEF là tam giác cân vì:
xét tam giác vuông BME và tam giác vuông CMF
Góc B = góc C
MB = MC ( gt )
Vậy....( cạnh huyền. góc nhọn )
=> ME = MF ( 2 cạnh tương ứng )
Chúc bạn học tốt !!!
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: ME=MF
hay ΔMEF cân tại M
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
Xét ΔABC có AE/AB=AF/AC
nên FE//BC
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó:ΔAEM=ΔAFM
Suy ra:ME=MF
hay ΔMEF cân tại M
c: Ta có: AE=AF
ME=MF
Do đó: AM là đường trung trực của FE
hay AM⊥FE
a, Xét tam giác AMB và tam giác AMC có
AM _ chung
AB = AC
^MAB = ^MAC
Vậy tam giác AMB = tam giác AMC (c.g.c)
b, Xét tam giác AEM và tam giác AFM có
AM _ chung
^MAE = ^MAF
Vậy tam giác AEM = tam giác AFM (ch-gn)
=> AE = AF ( 2 cạnh tương ứng )
=> EM = FM ( 2 cạnh tương ứng )
Xét tam giác MEF có EM = FM
Vậy tam giác MEF cân tại M
c, AE/AB = AF/AC => EF // BC
mà tam giác ABC cân tại A có AM là phân giác
đồng thời là đường cao
=> AM vuông BC
=> AM vuông EF
Cậu ghi rõ ràng hơn chút được không ạ . Cậu ghi AB AC ; BE BI mình không hiểu đc
Bạn tự vẽ hình nhé
CM :
a, Xét tam giác ABM và tam giác ACM , ta có :
góc AMB = góc AMC ( =90 o )
AB = AC (Vì tam giác ABC cân tại A)
AM : Cạnh chung
=> Tam giac ABM = tam giác ACM ( cạnh huyền - cạnh góc vuông )
còn cách thứ 2 nữa ( theo trường hợp cạnh huyền góc nhọn ) nhưng mình chỉ làm 1 cách thôi
b, Vì tam giác ABM = tam giác ACM ( chứng minh câu a )
=> góc EAM = góc FAM ( 2 góc tương ứng )
=> góc EAM = góc FAM ( 2 gó tương ứng )
Xét tam giác EAM và tam giác FAM , ta có :
gÓC EAM = góc FAM ( 90 o )
AM : cạnh chung
góc EAM = góc FAM ( cmt )
AM : cạnh chung
=> tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn )
=> ME = MF ( 2 cạnh tương ứng )
c, Vì tam giác AEM = tam giác AFM ( chứng minh câu b)
=> AE = AF ( 2 cạnh tương ứng )
Vậy tam giác AEF cân tại A
Bạn tự vẽ hình nhé
CM :
a, Xét tam giác ABM và tam giác ACM , ta có :
góc AMB = góc AMC ( =90 o )
AB = AC (Vì tam giác ABC cân tại A)
AM : Cạnh chung
=> Tam giac ABM = tam giác ACM ( cạnh huyền - cạnh góc vuông )
còn cách thứ 2 nữa ( theo trường hợp cạnh huyền góc nhọn ) nhưng mình chỉ làm 1 cách thôi
b, Vì tam giác ABM = tam giác ACM ( chứng minh câu a )
=> góc BAM = góc CAM ( 2 góc tương ứng )
=> góc EAM = góc FAM ( 2 gó tương ứng )
Xét tam giác EAM và tam giác FAM , ta có :
gÓC EAM = góc FAM ( 90 o )
AM : cạnh chung
góc EAM = góc FAM ( cmt )
AM : cạnh chung
=> tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn )
=> ME = MF ( 2 cạnh tương ứng )
c, Vì tam giác AEM = tam giác AFM ( chứng minh câu b)
=> AE = AF ( 2 cạnh tương ứng )
Vậy tam giác AEF cân tại A