Giải bpt : \(5x-\frac{3-2x}{2}>\frac{7x-5}{2}+x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{2}+\left(5x-9\right)>\frac{6-5x}{7}+12\)
<=> \(\frac{7}{14}+\frac{14\left(5x-9\right)}{14}>\frac{2\left(6-5x\right)}{14}+\frac{168}{14}\)
<=> \(\frac{7}{14}+\frac{70x-126}{14}>\frac{12-10x}{14}+\frac{168}{14}\)
<=> 7 + 70x - 126 > 12 - 10x + 168
<=> 70x + 10x > 12 + 168 - 7 + 126
<=> 80x > 299
<=> x > 299/80
b) \(\frac{3x-5}{6}-4x+\frac{2}{5}>\frac{2+5x}{3}\)
\(\Leftrightarrow\frac{5\left(3x-5\right)}{30}-\frac{120x}{30}+\frac{12}{30}>\frac{10\left(2+5x\right)}{30}\)
\(\Leftrightarrow\frac{15x-25}{30}-\frac{120x}{30}+\frac{12}{30}>\frac{20+50x}{30}\)
<=> 15x - 25 - 120x + 12 > 20 + 50x
<=> 15x - 120x - 50x > 20 + 25 - 12
<=> -155x > 33
<=> x < -33/155
\(\frac{10x-5}{6}+\frac{x+3}{4}\ge\frac{7x+3}{2}-\frac{12-x}{3}\)
<=>\(\frac{2\left(10x-5\right)}{12}+\frac{3\left(x+3\right)}{12}\ge\frac{6\left(7x+3\right)}{12}-\frac{4\left(12-x\right)}{12}\)
<=>2(10x-5)+3(x+3)\(\ge\)6(7x+3)-4(12-x)
<=>20x-10+3x+9\(\ge\)42x+18-48+4x
<=>23x-1\(\ge\)46x-30
<=>23x-46x\(\ge\)-30+1
<=>-23x\(\ge\)-29
<=>x\(\le\)\(\frac{29}{23}\)
Vậy S={x I x\(\le\frac{29}{23}\)}
\(\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1}{\left(x-3\right)\left(2x-1\right)}=\frac{2x+5}{\left(x-3\right)\left(2x-1\right)}\)
\(\frac{\left(x-3\right)\left(x+4\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x-3\right)\left(2x-1\right)\left(x-2\right)}=\frac{\left(2x+5\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}\)
\(\Rightarrow x^2+x-12+x^2-x-2=2x^2+x-10\Leftrightarrow x=-4\)
\(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
\(\Rightarrow\frac{x+4}{2x^2-5x+2}=\frac{2x-5}{2x^2-7x+3}-\frac{x+1}{2x^2-7x+3}\)
\(\Rightarrow\frac{x+4}{2x^2-5x+2}=\frac{x+4}{2x^2-7x+3}\)
TH1:\(x+4\ne0\)
\(\Rightarrow2x^2-5x+2=2x^2-7x+3\)
\(\Rightarrow-5x+2=-7x+3\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
TH2:\(x+4=0\)
\(\Rightarrow x=-4\)
Thực hiện các phép đổi tương đương , ta đưa ( 1 ) về dạng :
\(\frac{x+4}{2x^2-5x+2}-\frac{x+4}{2x^2-7x+3}=0\)
\(\Leftrightarrow\left(x+4\right)\left(\frac{1}{2x^2-5x+2}-\frac{1}{2x^2-7x+3}\right)=0\)
\(\Leftrightarrow\frac{\left(x+4\right)\left(1-2x\right)}{\left(2x^2-5x+2\right)\left(2x^2-7x+3\right)}=0\)
\(\Leftrightarrow\left(x+4\right)\left(1-2x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-4\\x=\frac{1}{2}\end{array}\right.\)
Thữ vào mẫu thức : Với \(x=\frac{1}{2}\) thì \(2x^2-5x+2=0\)
Với \(x=-4\) thì \(\left(2x^2-5x+2\right)\left(2x^2-7x+3\right)\ne0\)
Vậy phương trình ( 1 ) là cho nghiệm duy nhất là \(x=-4\)
\(5x-\frac{3-2x}{2}>\frac{7x-5}{2}+x\)
\(\Leftrightarrow\) \(\frac{10x}{2}-\frac{3-2x}{2}>\frac{7x-5}{2}+\frac{2x}{2}\)
\(\Rightarrow\) \(10x-3+2x>7x-5+2x\)
\(\Leftrightarrow\) \(10x+2x-7x-2x>-5+3\)
\(\Leftrightarrow\) \(3x>-2\)
\(\Leftrightarrow\) \(x>-\frac{2}{3}\)
Vậy ................
4x > (5x -2)/2
4x - 5x/2 > -1
3x/2 > -1
3x > -2
x>-2/3