K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2018

ta có : \(\left(x-1\right)\left(3-x\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\3-x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\3-x>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>3\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< 3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>3\\x< 1\end{matrix}\right.\) vậy \(x< 1\) hoặc \(x>3\)

24 tháng 8 2018

\(\left(x-1\right)\left(3-x\right)=-x^2+2x-1-2=-\left(x-1\right)^2-2\le-2< 0\)


a: Ta có: \(\left(x+1\right)^3-\left(x+2\right)\left(x-1\right)^2-3\left(x-3\right)\left(x+3\right)=5\)

\(\Leftrightarrow x^3+3x^2+3x+1-\left(x+2\right)\left(x^2-2x+1\right)-3\left(x^2-9\right)=5\)

\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^3-2x^2+x+2x^2-4x+2\right)-3\left(x^2-9\right)=5\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x-2-3x^2+9=5\)

\(\Leftrightarrow6x=-3\)

hay \(x=-\dfrac{1}{2}\)

b: Ta có: \(\left(x+1\right)^3+\left(x-1\right)^3=\left(x+2\right)^3+\left(x-2\right)^3\)

\(\Leftrightarrow x^3+3x^2+3x+1+x^3-3x^2+3x-1=x^3+6x^2+12x+8+x^3-6x^2+12x-8\)

\(\Leftrightarrow2x^3+6x=2x^3+24x\)

\(\Leftrightarrow x=0\)

c: Ta có: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-1=-10\)

\(\Leftrightarrow12x=-11\)

hay \(x=-\dfrac{11}{12}\)

6 tháng 12 2021
(X-1)^3 = (1-x)^2
27 tháng 3 2017

2 nha bn

5 tháng 8 2021

lớp 1 căng đét

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

Lời giải:

a. $x(3x+1)+(x-1)^2-(2x+1)(2x-1)=0$

$\Leftrightarrow (3x^2+x)+(x^2-2x+1)-(4x^2-1)=0$

$\Leftrightarrow 3x^2+x+x^2-2x+1-4x^2+1=0$

$\Leftrightarrow (3x^2+x^2-4x^2)+(x-2x)+(1+1)=0$

$\Leftrightarrow -x+2=0$

$\Leftrightarrow x=2$

b.

$(x+1)^3+(2-x)^3-9(x-3)(x+3)=0$

$\Leftrightarrow [(x+1)+(2-x)][(x+1)^2-(x+1)(2-x)+(2-x)^2]-9(x-3)(x+3)=0$

$\Leftrightarrow 3[x^2+2x+1-(x-x^2+2)+(x^2-4x+4)]-9(x-3)(x+3)=0$

$\Leftrightarrow 3(3x^2-3x+3)-9(x^2-9)=0$

$\Leftrightarrow 9(x^2-x+1)-9(x^2-9)=0$

$\Leftrightarrow 9(x^2-x+1-x^2+9)=0$
$\Leftrightarrow 9(-x+10)=0$

$\Leftrightarrow -x+10=0\Leftrightarrow x=10$

 

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

c.

$(x-1)^3-(x+3)(x^2-3x+9)+3x^2=25$

$\Leftrightarrow (x^3-3x^2+3x-1)-(x^3+3^3)+3x^2=25$

$\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2=25$
$\Leftrightarrow (x^3-x^3)+(-3x^2+3x^2)+3x-28=25$

$\Leftrightarrow 3x-28=25$

$\Leftrightarrow x=\frac{53}{3}$

d.

$(x+2)^3-(x+1)(x^2-x+1)-6(x-1)^2=23$
$\Leftrightarrow (x^3+6x^2+12x+8)-(x^3+1)-6(x^2-2x+1)=23$

$\Leftrightarrow x^3+6x^2+12x+8-x^3-1-6x^2+12x-6=23$

$\Leftrightarrow (x^3-x^3)+(6x^2-6x^2)+(12x+12x)+(8-1-6)=23$
$\Leftrightarrow 24x+1=23$

$\Leftrgihtarrow 24x=22$

$\Leftrightarrow x=\frac{11}{12}$

2 tháng 3 2021

Bài dài quá, lần sau chia nhỏ câu hỏi nhé!!!!!

12 tháng 9 2021

đúng vậy

a: =>9x^2+12x+4-9x^2+12x-4=5x+38

=>24x=5x+38

=>19x=38

=>x=2

e: =>x^3+1-2x=x^3-x

=>-2x+1=-x

=>-x=-1

=>x=1

f: =>x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1

=>12x-9=3x+1

=>9x=10

=>x=10/9

b: \(\Leftrightarrow3x^2-12x+12+9x-9=3x^2+3x-9\)

=>-3x+3=3x-9

=>-6x=-12

=>x=2

10 tháng 11 2021

\(A=2x^3+3x^2-3-5x^2-5x=2x^3-2x^2-5x-3\\ B=125-150x+60x^2-8x^3-25+9x^2=-8x^3+69x^2-150x+100\\ C=\left(3x+1-2x+1\right)\left(3x+1+2x-1\right)=5x\left(x+2\right)=5x^2+10x\\ D=\left(2x+1-3+x\right)^2=\left(3x-2\right)^2=9x^2-12x+4\\ E=x^3-6x^2+12x-8-x^3+x+6x^2-18x=-5x-8\\ F=x^3-3x^2+3x-1-3+3x^2-x^3+1-3x=-3\)

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Ý bạn là \(f(x)=\frac{1}{9+x^2}+\frac{3}{9+x^2}\) hay thế nào? Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo để được hỗ trợ tốt hơn).

8 tháng 1 2023

`e)(x+2)(x+3)=5-x+x(x-1)-2`

`<=>x^2+3x+2x+6=5-x+x^2-x-2`

`<=>7x=-3`

`<=>x=-3/7`

`f)(2x-3)(3-x)+(x-1)^2=1-(x+3)(x-3)`

`<=>6x-2x^2-9+3x+x^2-2x+1=1-x^2+9`

`<=>7x=17`

`<=>x=17/7`

`j)3(x+1)(x-1)=3(x^2+2x)+1`

`<=>3x^2-3=3x^2+6x+1`

`<=>6x=-4`

`<=>x=-2/3`

9 tháng 1

1) Do x ∈ Z và 0 < x < 3

⇒ x ∈ {1; 2}

2) Do x ∈ Z và 0 < x ≤ 3

⇒ x ∈ {1; 2; 3}

3) Do x ∈ Z và -1 < x ≤ 4

⇒ x ∈ {0; 1; 2; 3; 4}

a: \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6}{\sqrt{x}-1}-\dfrac{2\sqrt{3}}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}-6-2\sqrt{3}}{\sqrt{x}-1}\)

b: \(=\dfrac{3-\sqrt{x}-1+\sqrt{x}+5\sqrt{x}}{\sqrt{x}-2}=\dfrac{5\sqrt{x}+2}{\sqrt{x}-2}\)

c: \(=\dfrac{2-6\sqrt{x}-1+\sqrt{x}-3+\sqrt{x}}{\sqrt{x}-4}\)

\(=\dfrac{-4\sqrt{x}-4}{x-4}\)