Cho tam giác ABC vuông tại C có góc A bằng 60độ và trung tuyến \(BD=\frac{3}{4}a\). Tính diện tích tam giác ABC theo a.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔABC vuông tại A có
\(AC=AB\cdot\tan30^0\)
\(=2\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
có 3 cách chon cách nào thì chọn
đặt BC=a ---> AD=a/2. Vì G là giao điểm các đường trung tuyến AD,BE nên DG=AD/3 =a/6 và AG=2GD=a/3
Áp dụng Pitago cho tg ABG : BG^2= AB^2 -AG^2 = 6 -(a/3)^2 --> BG^2= 6 -(a^2)/9 (*)
Áp dụng Pitago cho tg BDG: BG^2= BD^2-DG^2 = (a/2)^2 -(a/6)^2 = (2/9).(a^2) (**)
So sánh (*) và (**) ta có BG^2 = 6 -(a^2)/9 = (2/9).(a^2) --> 6= (a^2)/9 + (2/9). (a^2) ---> a^2 =18 --> a=√18 =3√2
cách 2
Ta có góc BEA = góc DAB = góc DBA
=> tam giác BAE đồng dạng tam giác CAB
=> AC/AB = AB/AE
=> AC .AE = 6 <=> AC^2 = 12 ( AE = 1/2 AC)
Pytago :
BC^2 = AC^2 + BC^2 = 24
=> BC = 3 căn2
Cách 3
Ta có góc BEA = góc DAB = góc DBA
=> tam giác BAE đồng dạng tam giác CAB
=> AC/AB = AB/AE
=> AC .AE = 6 <=> AC^2 = 12 ( AE = 1/2 AC)
Pytago :
BC^2 = AC^2 + BC^2 = 24
=> BC = 3 căn2
Tung 11A2 · 6 năm trước
Không biết đúng ko
a: DM là phan giác
=>BM/MA=BD/DA
=>5/MA=10/6=5/3
=>MA=3cm
b: ΔBDC có DN là phân giác
nên BN/NC=BD/DC
=>BN/NC=BM/MA
=>MN//AC