Cho P = 1 + x + x2 + x3 + ... + x9 + x10 . Chứng minh rằng: x.P - P = x11 - 1
Giusp mik với,mik cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X1: HCl X2: H2S X3: FeCl2
X4: CuS X5: H2SO4 X6: O2
X7: S X8: H2O X9: Cl2
X10: FeCl3 X11:I2 X12: MnO2
Đáp án D
Chọn D
X1: HCl X2: H2S
X3: FeCl2 X4: CuS
X5: H2SO4 X6: O2
X7: S X8: H2O
X9: Cl2 X10: FeCl3
X11:I2 X12: MnO2
Đáp án D
X1: HCl
X2: H2S
X3: FeCl2
X4: CuS
X5: H2SO4
X6: O2
X7: S
X8: H2O
X9: Cl2
X10: FeCl3
X11:I2
X12: MnO2
2KClO3--->2KCl+3O2
.. .. .. .. .. ..
O2+ S --->SO2
.. .. .. .. .. .. ..
3O2+2H2S->2SO2+2H2O
.. .. .. .. .. ..
O2+2H2--->2H2O
.. .. .. .. .. ..
O2+2SO2--->2SO3
.. .. .. .. .. ..
SO3+H2O--->H2SO4
NHA..
Bài 4.
\(A=2x^3+(x+1)^3-3x(x-2)(x+2)-3(x^2+5x+9)\\=2x^3+(x^3+3x^2+3x+1)-3x(x^2-4)-3x^2-15x-27\\=2x^3+x^3+3x^2+3x+1-3x^3+12x-3x^2-15x-27\\=(2x^3+x^3-3x^3)+(3x^2-3x^2)+(3x+12x-15x)+(1-27)\\=-26\\---\)
\(B=x(x-4x)+x(2-x)(x+2)+4(2x^2-5x+4)\\=x\cdot(-3x)+x(2-x)(2+x)+8x^2-20x+16\\=-3x^2+x(4-x^2)+8x^2-20x+16\\=-3x^2+4x-x^3+8x^2-20x+16\)
Bạn kiểm tra lại đề giúp mình!
\(C=(x-2y)(x^2+2xy+4y^2)-(x^3-8y^3+10)\) (sửa đề)
\(=x^3-(2y)^3-x^3+8y^2-10\\=x^3-8y^3-x^3+8y^3-10\\=(x^3-x^3)+(-8y^3+8y^3)-10\\=-10\)
Bài 5.
\(d)xy^2-3x^3y^2-2x(xy-3xy^2)\\=xy^2-3x^3y^2-2x^2y+6x^2y^2\\---\\f)(x-y)(2x+y)-2x^2+y^2+3xy\\=x(2x+y)-y(2x+y)-2x^2+y^2+3xy\\=2x^2+xy-2xy-y^2-2x^2+y^2+3xy\\=(2x^2-2x^2)+(xy-2xy+3xy)+(-y^2+y^2)\\=2xy\)
\(Toru\)
Tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-n-so-x1-x2-xn-moi-so-nhan-gia-tri-1-hoac-1chung-minh-rang-neu-x1x2-x2x3-xnx1-0-thi-n-chia-het-cho-4.3190495787733
Tham khảo :
Lời giải:
Vì x1,x2,...,xnx1,x2,...,xn nhận giá trị 11 hoặc −1−1 nên x1x2,x2x3,...,xnx1x1x2,x2x3,...,xnx1 nhận giá trị 11 hoặc −1−1
Để tổng x1x2+...+xnx1=0x1x2+...+xnx1=0 thì số số hạng nhận giá trị 11 bằng số số hạng nhận giá trị −1−1
Gọi số số hạng nhận giá trị 11 và số số hạng nhận giá trị −1−1 là kk
Tổng số số hạng: n=k+k=2kn=k+k=2k
Lại có:
(−1)k1k=x1x2.x2x3...xnx1=(x1x2...xn)2=1(−1)k1k=x1x2.x2x3...xnx1=(x1x2...xn)2=1
⇒k⇒k chẵn
⇒n=2k⋮4
Lời giải:
Ta có:
\(P=1+x+x^2+x^3+...+x^9+x^{10}\)
\(\Rightarrow xP=x+x^2+x^3+...+x^{10}+x^{11}\)
Trừ theo vế:
\(xP-P=(x+x^2+x^3+...+x^{10}+x^{11})-(1+x+x^2+...+x^{10})\)
\(\Rightarrow \)\(xP-P=x^{11}-1\) (đpcm)
P.s: Bạn lưu ý lần sau nhớ viết công thức rõ ràng.