K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

a, 222..4 có tổng các chữ số là 104 chia 3 dư 2 nên k phải là số cp   

b.ko vì số chính phương luôn luôn chia cho 3 và 4 có số dư là 2

c, A=1994^4+7 chia 4 dư 3 nên A k phải là số cp

d,B=144..4 = 4.361..11(97 số 1)=> B chính phương <=> 361..1 chính phương mà 361..11 chi 4 dư 3 do đó B k phải là số cp

3 tháng 1 2018

tự nghĩ đi bn 

28 tháng 5 2016
  • HỌC TOÁN
  • KIỂM TRA
  • BÁO CÁO
  • THÔNG TIN

Bài toán 104

Một số chính phương là số viết được dạng tích của một số tự nhiên với chính nó.

Ta có:

  - Số \(14\) không phải là số chính phương

  - Số \(144\) là số chính phương vì \(144=12\times12=12^2\)

  - Số \(1444\) là số chính phương vì \(1444=38\times38=38^2\) .

Bạn hãy tìm tất cả các số có dạng \(144...4\) (số có các chữ số 4 sau chữ số 1) mà là số chính phương?

----------------------

Các bạn trình bày lời giải đầy đủ vào ô Gửi Ý kiến phía dưới. Năm bạn có lời giải hay và sớm nhất sẽ được cộng/thưởng 1 tháng VIP của Online Math. Đáp án và giải thưởng sẽ được công bố vào Thứ Sáu ngày 3/6/2016. Câu đố tiếp theo sẽ lên mạng vào Thứ Bảy ngày 4/6/2016.

 

Xem thêm:

  • Bài toán 103
  • Bài toán 102
  • Bài toán 101
  • Bài toán 100
  • Bài toán 99

 

Hoàng Thị Thu Huyền DMCA.com Protection Status                  Gửi ý kiến 23 bình luận
  King Math09:38:50 ngày 28/05/2016 Trả lời

Đặt $a_1=14;a_2=144;a_3=1444;a_n=144...4$a1=14;a2=144;a3=1444;an=144...4, ta xét các trường hợp:

a, $n<4$n<4 

Ta dễ dàng thấy $a_1=14$a1=14 không phải là số chính phương và $a_2=144=12^2$a2=144=122 ; $a_3=1444=38^2$a3=1444=382 là các số chính phương.

b, $n\ge4$n4 

Ta có: $a_n=144...4=10000b+4444\left(b\in Z\right)$an=144...4=10000b+4444(bZ) 

Vì $10000\vdots16$1000016 và 4444 chia 16 dư 12 nên $a_n$an chia 16 dư 12

Giả sử $a_n$an là số chính phương, vì $a_n\vdots4$an4 nhưng không chia hết cho 16 nên:

$a_n=\left(4k+2\right)^2=16\left(k^2+k\right)+4$an=(4k+2)2=16(k2+k)+4 $\Rightarrow$ $a_n$an chia 16 dư 4. Vô lý.

Vậy $a_n$an không phải là số chính phương.

Kết luận: Trong dãy số tự nhiên $a_n=144...4$an=144...4, chỉ có $a_2=144$a2=144 và $a_3=1444$a3=1444 là các số chính phương.

31 tháng 5 2016

Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.

Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.

b,n>4

Ta có : an=144..4=10000b+4444(bεZ) 

Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12

Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.

Vậy an không phải là số chính phương.

Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương

§11. SỐ CHÍNH PHƯƠNGBài 1. Điền số tiếp theo vào dấu chấm :a) 1, 9, 25, 49,... b) 3, 7, 12, 19, ... c) 0, 4, 16, 36, ...... d) 10, 40, 90, 52, 63, 94,......Bài 2. Trong các số sau, số nào là số chính phương: a) 22022 b) 32021 c) 42019 d) 1945 2 29Bài 3. a) Tìm số chính phương có 4 chữ số khác nhau được tạo bởi các chữ số 4, 0, 2, 3,b) Tìm số chính phương có bốn chữ số, được viết bởi các chữ số 3, 6, 8, 8.c) Tìm...
Đọc tiếp

§11. SỐ CHÍNH PHƯƠNG

Bài 1. Điền số tiếp theo vào dấu chấm :
a) 1, 9, 25, 49,... b) 3, 7, 12, 19, ... c) 0, 4, 16, 36, ...... d) 10, 40, 90, 52, 63, 94,......
Bài 2. Trong các số sau, số nào là số chính phương: a) 22022 b) 32021 c) 42019 d) 1945 2 29
Bài 3. a) Tìm số chính phương có 4 chữ số khác nhau được tạo bởi các chữ số 4, 0, 2, 3,
b) Tìm số chính phương có bốn chữ số, được viết bởi các chữ số 3, 6, 8, 8.
c) Tìm số chính phương có 4 chữ số khác nhau tạo bởi từ 4 chữ số 2; 3; 4; 9.
Bài 4. Tìm số có hai chữ số, biết rằng nếu nhân nó với 135 thì ta được một số chính phương.
Bài 5. Các tổng sau có phải số chính phương không ? Tại sao ?
A = 3 + 32
+ 33
+ ... +320 B = 11 + 112
+ 113
+ 114
+ 115
;

C = 11 + 112
+ 113
D = 1122 + 1133 + 1144
.
E = 1010 + 8 F = 100! + 7
G = 1010 + 5 H= 10100 + 1050 + 1

0
22 tháng 2 2020

cí thích thì cính phương thôi

22 tháng 2 2020

có  

33333333....3(50 số 3)^2