Em đang cần gấp ạ🥺
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:1) \(10+2\sqrt{10}=\sqrt{10}\left(2+\sqrt{10}\right)\)
2) \(7+3\sqrt{7}=\sqrt{7}\left(3+\sqrt{7}\right)\)
các câu 3,4,5 bạn làm tương tự như 2 câu trên
6) \(3a\sqrt{b}+3b\sqrt{a}=3\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
7) \(a^2-2a\sqrt{2}+2=a^2-2a\sqrt{2}+\left(\sqrt{2}\right)^2=\left(a-\sqrt{2}\right)^2\)
8) \(b-4=\left(\sqrt{b}\right)^2-2^2=\left(\sqrt{b}-2\right)\left(\sqrt{b}+2\right)\)
Bài 2: 1) \(\dfrac{\left(2-\sqrt{a}\right)^2-\left(\sqrt{a}+3\right)^2}{2a+\sqrt{a}}\left(a>0\right)\)
\(=\dfrac{\left(2-\sqrt{a}-\sqrt{a}-3\right)\left(2-\sqrt{a}+\sqrt{a}+3\right)}{\sqrt{a}\left(2\sqrt{a}+1\right)}\)
\(=\dfrac{\left(-2\sqrt{a}-1\right).5}{\sqrt{a}\left(2\sqrt{a}+1\right)}=-\dfrac{5}{\sqrt{a}}\)
3) \(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\left(a\ge0,a\ne4\right)\)
\(=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{\sqrt{a}-2}=\sqrt{a}+2-\left(2+\sqrt{a}\right)=0\)
4) \(\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(1-\dfrac{a+\sqrt{a}}{1+\sqrt{a}}\right)\left(a\ge0,a\ne1\right)\)
\(=\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right)\)
\(=\left(1-\sqrt{a}\right)\left(1-\sqrt{a}\right)=\left(1-\sqrt{a}\right)^2=a-2\sqrt{a}+1\)
mấy câu còn lại bạn làm tương tự
Bài 1:
1) \(10+2\sqrt{10}=2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)\)
2) \(7+3\sqrt{7}=\sqrt{7}\left(\sqrt{7}+3\right)\)
3) \(5\sqrt{7}-7\sqrt{5}=\sqrt{35}\left(\sqrt{5}-\sqrt{7}\right)\)
4) \(4\sqrt{3}-2\sqrt{6}=2\sqrt{6}\left(\sqrt{2}-\sqrt{1}\right)\)
5) \(6\sqrt{6}-2\sqrt{12}+3\sqrt{2}\)
\(=\sqrt{216}-\sqrt{48}+\sqrt{18}\)
\(=\sqrt{6}\left(6-2\sqrt{2}+\sqrt{3}\right)\)
6) \(3a\sqrt{6}+36\sqrt{a}\)
\(=3\sqrt{a}\left(\sqrt{6a}+12\right)\)
\(=3\sqrt{6a}\left(\sqrt{a}+2\sqrt{6}\right)\)
7) \(a^2-2a\sqrt{2}+2=\left(a-\sqrt{2}\right)^2\)
8) \(b-4=\left(\sqrt{b}-2\right)\left(\sqrt{b}+2\right)\)
Bài 2:
a) Ta có: \(\dfrac{\left(2-\sqrt{a}\right)^2-\left(\sqrt{a}+3\right)^2}{2a+\sqrt{a}}\)
\(=\dfrac{a-4\sqrt{a}+4-a-6\sqrt{a}-9}{2a+\sqrt{a}}\)
\(=\dfrac{-10\sqrt{a}-5}{\sqrt{a}\left(2\sqrt{a}+1\right)}\)
\(=\dfrac{-5\left(2\sqrt{a}+1\right)}{\sqrt{a}\left(2\sqrt{a}+1\right)}\)
\(=-\dfrac{5}{\sqrt{a}}\)
4) Ta có: \(\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(1-\dfrac{a+\sqrt{a}}{1+\sqrt{a}}\right)\)
\(=\left(1-\sqrt{a}\right)\left(1-\sqrt{a}\right)\)
\(=a-2\sqrt{a}+1\)
a) Vì ABCD là hình bình hành ( gt )
⇒ AD // BC
F ∈ BC
⇒ AD // BF
⇒ ∠EDA = ∠EFB ( hai góc so le trong )
Xét △AED và △BEF, có :
∠EDA = ∠EFB ( cmt )
∠AED = ∠FEB ( hai góc đối đỉnh )
⇒ △AED ∼ △BEF (g-g)
b) Vì ABCD là hình bình hành ( gt )
⇒ AB // CD
E ∈ AB
⇒ BE // CD
Xét △FDC, có :
BE // CD ( cmt )
E ∈ DF ; B ∈ DC
⇒ \(\dfrac{FB}{FC}=\dfrac{EB}{DC}\) (Hệ quả của định lí Ta-let)
⇒ \(\dfrac{BF}{BE}=\dfrac{FC}{DC}\) (1)
Vì △AED ∼ △BEF ( cmt )
⇒ \(\dfrac{AE}{BE}=\dfrac{AD}{BF}\) (TSDD)
⇒ \(\dfrac{AE}{AD}=\dfrac{BE}{BF}\) (2)
Từ (1) và (2) ⇒ \(\dfrac{AE}{AD}=\dfrac{CF}{CD}\)
⇒ AD.CD = AE.CF
c) Xét △DGC, có :
AE // DC ( cmt )
G ∈ AC ; G ∈ DE
⇒ \(\dfrac{DG}{DE}=\dfrac{GC}{AC}\) (Hệ quả của định lí Ta-let) (3)
Xét △FGC, có :
AD // CF ( cmt )
G ∈ AC ; G ∈ DF
⇒ \(\dfrac{DG}{DF}=\dfrac{AG}{AC}\) (Hệ quả của định lí Ta-let) (4)
Từ (3) và (4) ⇒ \(\dfrac{DG}{DE}+\dfrac{DG}{DF}=\dfrac{GC}{AC}+\dfrac{AG}{AC}\)
⇒ \(\dfrac{DG}{DE}+\dfrac{DG}{DF}\) = 1
⇒ \(\dfrac{1}{DG}\left(\dfrac{DG}{DE}+\dfrac{DG}{DF}\right)=\dfrac{1}{DG}\)
⇒ \(\dfrac{1}{DG}=\dfrac{1}{DE}+\dfrac{1}{DF}\)
Tác giả muốn nhấn mạnh rằng chính tiếng gà mới là lời nhắc nhở, gợi nhớ kí ức, thôi thúc người chiến sĩ bảo vệ đất nước, quê hương thanh bình.
a: 2+5/6=12/6+5/6=17/6
b: 5/12+3/4+1/3=5/12+9/12+4/12=18/12=3/2
c: 2/3+3/4=8/12+9/12=17/12
\(a,=\sqrt{x^3}-1=x\sqrt{x}-1\\ b,=\sqrt{x^3}-\sqrt{y^3}=x\sqrt{x}-y\sqrt{y}\\ c,=8\sqrt{x^3}+\sqrt{y^3}=2x\sqrt{x}+y\sqrt{y}\)
a) \(\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)=\left(\sqrt{x}\right)^3-1=x\sqrt{x}-1\)
b) \(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{x}.\sqrt{y}+y\right)=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3=x\sqrt{x}+y\sqrt{y}\)
c) \(\left(2\sqrt{x}+\sqrt{y}\right)\left(3\sqrt{x}-2\sqrt{y}\right)=6x-4\sqrt{xy}+3\sqrt{xy}-2y=6x-\sqrt{xy}-2y\)