K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

Đa thức bậc 3 có dạng : \(f\left(x\right)=ax^3+bx^2+cx+d\)

Ta có : \(\left\{{}\begin{matrix}f\left(x\right)=Q\left(x\right).\left(x-1\right)+6\\f\left(x\right)=Q\left(x\right).\left(x-2\right)+6\\f\left(x\right)=Q\left(x\right).\left(x-5\right)+6\\f\left(-1\right)=-18\end{matrix}\right.\)

Theo bài ra ta có hệ phương trình :

\(\left\{{}\begin{matrix}a+b+c+d=6\\8a+4b+2c+d=6\\125a+25b+5c+d=6\\-a+b-c+d=-18\end{matrix}\right.\)

Giải hệ phương trình ta tìm được :

\(\left\{{}\begin{matrix}a=\dfrac{2}{3}\\b=-\dfrac{16}{3}\\c=\dfrac{34}{3}\\d=-\dfrac{2}{3}\end{matrix}\right.\)

\(\Rightarrow f\left(x\right)=\dfrac{2}{3}x^3-\dfrac{16}{3}x^2+\dfrac{34}{3}x-\dfrac{2}{3}\)

\(\Rightarrow f\left(2005\right)=\dfrac{2}{3}.2005^3-\dfrac{16}{3}.2005^2+\dfrac{34}{3}.2005-\dfrac{2}{3}=5352016006\)

1 tháng 9 2018

1) 

Đặt \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e.\)( a khác 0 )

Ta có:

\(f\left(1\right)=a+b+c+d+e=0\)                                            (1)

\(f\left(2\right)=16a+8b+4c+2d+e=0\)                              (2)

\(f\left(3\right)=81a+27b+9c+3d+e=0\)                           (3)

\(f\left(4\right)=256a+64b+16c+4d+e=6\)                      (4)

\(f\left(5\right)=625a+125b+25c+5d+e=72\)                (5)

\(A=f\left(2\right)-f\left(1\right)=15a+7b+3c+d=0\)

\(B=f\left(3\right)-f\left(2\right)=65a+19b+5c+d=0\)

\(C=f\left(4\right)-f\left(3\right)=175a+37b+7c+d=6\)

\(D=f\left(5\right)-f\left(4\right)=369a+61b+9c+d=72-6=66\)

\(E=B-A=50a+12b+2c=0\)

\(F=C-B=110a+18b+2c=6\)

\(G=D-C=194a+24b+2c=66-6=60\)

Tiếp tục lấy H=F-E; K=G-F; M=H-K

Ta tìm được a

Thay vào tìm được b,c,d,e

2 tháng 9 2018

1. gọi đa thức cần tìm là f(x) =a.x^4+b.x^3+c.x^2+dx+e

có f(1)=f(2)=f(3) = 0 nên x=1,2,3 la nghiệm của f(x) = 0 vậy f(x) có thể viết dưới dạng f(x) = (x-1)(x-2)(x-3)(mx+n) 

thay f(4)=6 và f(5)=72 tìm được m =2 và n= -7 

Vậy đa thức f(x) =(x-1)(x-2)(x-3)(2x-7) => e = (-1).(-2).(-3).(-7) = 42

Với x=2010 thì (a 2010^4+b.2010^3+c.2010^2+d.2010 ) luôn chia hết 10 vậy số dư f(2010) chia 10 = số dư d/10 = 2 (42 chia 10 dư 2).

2. Thiếu dữ liệu 

3. đa thức f(x) chia đa thức (x-3) có số dư là 2 =>bậc f(x) = bậc (x-3)=1 và f(x) = m.(x-3) +2=mx+2-3m (1)

...........................................(x+4)...................9..........................................f(x) = n(x+4) + 9=nx+4n+9 (2)

để (1)(2) cùng xảy ra thì m=n và (2-3m)=(4n+9) => m = n = -1 khi đó đa thức f(x) = -x +5 

Không hiếu dữ liệu cuối f(x) chia 1 đa thức bậc 2 lại có thương là 1 đa thức bậc 2? => vô lý 

7 tháng 11 2020

Đặt F(x) = ax3 + bx2 + cx + d ( a ≠ 0 )

F(x) chia ( x - 1 ) ; ( x - 2 ) ; ( x - 3 ) đều dư 6

=> F(x) - 6 chia hết cho ( x - 1 ) ; ( x - 2 ) ; ( x - 3 )

<=> ax3 + bx2 + cx + d - 6 chia hết cho ( x - 1 ) ; ( x - 2 ) ; ( x - 3 )

Đến đây ta áp dụng định lí Bézoute :

F(x) - 6 chia hết cho x - 1 <=> F(1) = 0

<=> a + b + c + d - 6 = 0

<=> a + b + c + d = 6 (1)

F(x) - 6 chia hết cho x - 2 <=> F(2) = 0

<=> 8a + 4b + 2c + d - 6 = 0

<=> 8a + 4b + 2c + d = 6 (2)

F(x) - 6 chia hết cho x - 3 <=> F(3) = 0

<=> 27a + 9b + 3c + d - 6 = 0

<=> 27a + 9b + 3c + d = 6 (3)

F(-1) = -18

<=> -a + b - c + d = -18 (4)

Từ (1), (2), (3), (4) => \(\hept{\begin{cases}a+b+c+d=8a+4b+2c+d=27a+9b+3c+d=6\\-a+b-c+d=-18\end{cases}}\)

< Để giải hệ này xài máy 580VN X, Menu -> 9 -> 1 -> 4 >

Giải hệ ta được a = 1 ; b = -6 ; c = 11 ; d = 0

=> F(x) = x3 - 6x2 + 11x

15 tháng 3 2015

Giả sử đa thức thương có dạng là ax + b. Khi đó: f(x) = (x2+1)(ax+b) + 5x+4

Bạn lần lượt thay x = 1 và x = -1 vào đa thức trên thì ra hệ pt vs 2 ẩn a, b. cộng tương ứng từng vế của 2 hệ đó lại là tìm được a, b. thay a, b vào đa thức trên, khai triển ra rồi thay x = 2014 là ok