K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

\(\left(x+y+z\right)^2=x^2+y^2+z^2\\ \Rightarrow x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2\\ \Rightarrow2xy+2xz+2yz=0\\ \Rightarrow xy+xz+yz=0\left(đpcm\right)\)

a: Ta có: \(\left(ac+bd\right)^2-\left(ad+bc\right)^2\)

\(=a^2c^2+b^2d^2+2abcd-a^2d^2-b^2c^2-2abcd\)

\(=a^2\left(c^2-d^2\right)-b^2\left(c^2-d^2\right)\)

\(=\left(a^2-b^2\right)\left(c^2-d^2\right)\)

12 tháng 8 2021

Bạn có làm đc câu b ko, nếu đc thì làm nốt giùm mink nha

11 tháng 8 2021

a/ \(\left(a^2-b^2\right)\left(c^2-d^2\right)=a^2c^2-a^2d^2-b^2c^2+b^2d^2\)

\(=\left(a^2c^2+2abcd+b^2d^2\right)-\left(a^2d^2+2abcd+b^2c^2\right)\)

\(=\left(ac+bd\right)^2-\left(ad+bc\right)^2\)

11 tháng 8 2021

b/ \(x^2+y^2+z^2=xy+yz+zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2zx\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)

\(\Leftrightarrow x=y=z\)

8 tháng 5 2017

\(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)\ge0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\Rightarrow x=y=z\)

Bài này quá là cơ bản mình nghĩ bn nên làm thử trc khi hỏi

8 tháng 5 2017

ai nói chứ bác thì không được nói thế, bác học BĐT sắp thành siêu nhân rồi mà, chiều nay có làm được bài ko??

7 tháng 7 2019

Chi tham khao tai day:

Câu hỏi của Vương Nguyễn Thanh Triều - Toán lớp 8 - Học toán với OnlineMath

30 tháng 7 2019

hơi dài mà lười nên mình nói cách làm nha :P

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow xy+yz+xz=0\)

bạn cm \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}=0\)

tách: \(x^2+2yz=x^2+yz-xy-xz=\left(x-z\right).\left(x-y\right)\), mấy cái khác tương tự 

quy đồng rồi tính ra = 0 là được