rút gọn biểu thức:12+22+32+............+20182
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ghi cả cách giải nữa chứ,ghi mỗi đáp án thì làm sao hiểu được
a.Chứng tỏ rằng B = 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + 1/72 +1/82 < 1
b.Cho S = 3/1.4 + 3/4.7 + 3/7.10 +......+3/40.43 + 3/43.46 hãy chứng tỏ rằng S < 1
Xin lỗi mọi người mình tính đặt câu hỏi nhưng ấn nhầm phần trả lời ạ!
a, A = 1002 - 992 + 982 - 972 +...+ 22 - 12
A = (1002 - 992) + (982 - 972) +...+ (22 - 1)2
A = (100 - 99)(100+99) + (98-97)(98+97)+..+(2-1)(2+1)
A = 1.199 + 1.195 + 1.191 +...+1.3
A = 3 + ...+191+ 195 + 199
Dãy số trên là dãy số cách đều với khoảng cách là: 199 -195=4
Dãy số trên có số hạng là: (199 - 3): 4 + 1 = 50 (số )
A = (199 +3) \(\times\) 50 : 2 = 5050
a) \(153^2-53^2=\left(153-53\right)\left(153+53\right)=100.206=20600\)
b)
\(\left(2020^2-2019^2\right)+\left(2018^2-2017^2\right)+...+\left(2^2-1^2\right)\\ =\left(2020+2019\right)\left(2020-2019\right)+\left(2018+2017\right)\left(2018-2017\right)+...+\left(2+1\right)\left(2-1\right)\\ =2020+2019+2018+2017+...+2+1\\ =\dfrac{\left(2020+1\right)2020}{2}=2041210\)
Lời giải:
a. $153^2-53^2=(153-53)(153+53)=100.206=20600$
b.
$2020^2-2019^2+2018^2-2017^2+...+2^2-1^2$
$=(2020^2-2019^2)+(2018^2-2017^2)+...+(2^2-1^2)$
$=(2020-2019)(2020+2019)+(2018-2017)(2018+2017)+...+(2-1)(2+1)$
$=2020+2019+2018+2017+...+2+1$
$=\frac{2020.2021}{2}=2041210$
Đặt \(D=1^2+2^2+3^2+...+2018^2\)
\(D=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+2018\left(2019-1\right)\)
\(D=1.2-1+2.3-2+3.4-3+...+2018.2019-2018\)
\(D=\left(1.2+2.3+...+2018.2019\right)-\left(1+2+3+...+2018\right)\)
Đặt \(A=1.2+2.3+...+2018.2019\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+...+2018.2019\left(2020-2017\right)\)
\(\Rightarrow3A=2018.2019.2010\Rightarrow A=\frac{2018.2019.2020}{3}\)
Đặt \(B=1+2+3+...+2018\)
\(B=\frac{\left(2018+1\right)\left(2018-1+1\right)}{2}=\frac{2019.2018}{2}\)
\(\Rightarrow D=A+B=\frac{2018.2019.2020}{3}+\frac{2019.2018}{2}\)
\(\Rightarrow D=\frac{2018.2019.2020.2+2019.2018.3}{6}\)