b) x : 3 = x : 5 và x - y = -20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 3:
\(\dfrac{x}{y}=\dfrac{5}{9}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=5\\ \dfrac{y}{9}=10\Rightarrow y=90\)
Câu b:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\dfrac{x}{2}=7\Rightarrow x=14\\ \dfrac{y}{3}=7\Rightarrow y=21\)
Câu c:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-1}{5+7-10}=\dfrac{20}{2}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=50\\ \dfrac{y}{7}=10\Rightarrow y=70\\ \dfrac{z}{10}=10\Rightarrow z=100\)
Câu d:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\dfrac{x}{3}=11\Rightarrow x=3\\ \dfrac{y}{4}=11\Rightarrow y=44\\ \dfrac{z}{5}=11\Rightarrow z=55\)
Câu e:
\(\dfrac{x}{4}=\dfrac{y}{2}\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{6}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10} \)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{8+6-10}=\dfrac{20}{4}=5\)
\(\dfrac{x}{8}=5\Rightarrow x=40\\ \dfrac{y}{6}=5\Rightarrow y=30\\ \dfrac{z}{10}=5\Rightarrow z=50\)
3) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.9=90\end{matrix}\right.\)
4) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x}{10}=\dfrac{2y}{6}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=7.3=21\end{matrix}\right.\)
5) \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-z}{5+7-10}=\dfrac{20}{2}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.7=70\\z=10.10=100\end{matrix}\right.\)
6) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2y}{8}=\dfrac{2z}{10}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x=11.3=33\\y=11.4=44\\z=11.5=55\end{matrix}\right.\)
7) \(\Rightarrow\dfrac{x}{12}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{12+6-10}=\dfrac{20}{8}=\dfrac{5}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}.12=30\\y=\dfrac{5}{2}.6=15\\z=\dfrac{5}{2}.10=25\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Áp dụng tính chất cũa dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
- \(\frac{x}{3}=2\Rightarrow x=3.2=6\)
- \(\frac{y}{7}=2\Rightarrow y=7.2=14\)
Vậy : \(x=6;y=14\)
b) Áp dụng tính chất cũa dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
- \(\frac{x}{5}=2\Rightarrow x=2.5=10\)
- \(\frac{y}{2}=2\Rightarrow y=2.2=4\)
Vậy: \(x=10;y=4\)
a)Áp dụng tc dãy tỉ
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
\(\Rightarrow\begin{cases}\frac{x}{3}=2\\\frac{y}{7}=2\end{cases}\)\(\Rightarrow\begin{cases}x=6\\y=14\end{cases}\)
b)Áp dụng tc dãy tỉ
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
\(\Rightarrow\begin{cases}\frac{x}{5}=2\\\frac{y}{2}=2\end{cases}\)\(\Rightarrow\begin{cases}x=10\\y=4\end{cases}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{4}{3}\) = \(\dfrac{20}{4}\)\(x\) - 1
5\(x\) - 1 = \(\dfrac{4}{3}\)
5\(x\) = \(\dfrac{4}{3}\) + 1
5\(x\) = \(\dfrac{7}{3}\)
\(x\) = \(\dfrac{7}{3}\) : 5
\(x\) = \(\dfrac{7}{15}\)
b,
2\(\times\)\(x\) = 3\(\times\) y
\(x\) = \(\dfrac{3}{2}\) \(\times\) y
y - \(\dfrac{3}{2}\) \(\times\) y = 5
\(y\) \(\times\) ( 1 - \(\dfrac{3}{2}\)) = 5
\(y\) \(\times\) - \(\dfrac{1}{2}\) = 5
\(y\) = 5 : (-\(\dfrac{1}{2}\))
\(y\) = - 10
\(x\) = y - 5 = -10 - 5 =-15
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 2x+1.3y=123
<=>2x+1.3y=(22)3.33
<=> 2x+1=26 và 3y=33
<=>x+1=6 và y=3
<=>x=5 và y=3
b) 10x : 5y=20y
<=>10x=20y.5y=100y=(102)y
<=>x=2y (Nhiều số lắm chèn)
c) 2x=4y-1
<=>2x=2y-2
<=>x=y-2
Mặt khác: 27y=3x+8
<=> 33y=3x+8
<=>3y=x+8
<=>3y=(y-2)+8
<=>2y=6
<=>y=3
=>x=y-2=3-2=1
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(9x=4y\Rightarrow\frac{x}{4}=\frac{y}{9}=\frac{y-x}{9-4}=\frac{-25}{5}=-5\)
\(\Rightarrow\hept{\begin{cases}x=-5\times4=-20\\y=-5\times9=-45\end{cases}}\)
b,\(\frac{x}{2}=\frac{y}{5}=\frac{3x}{6}=\frac{2y}{10}=\frac{3x-2y}{6-10}=\frac{20}{-4}=-5\)
\(\Rightarrow\hept{\begin{cases}x=-5\times2=-10\\y=-5\times5=-25\end{cases}}\)
c,\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{9}=\frac{y^2}{25}=\frac{x^2-y^2}{9-25}=\frac{-64}{-16}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=9\times4=36\\y^2=25\times4=100\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm10\end{cases}}\)
Ta thấy \(\frac{x}{3}=\frac{y}{5}\)nên x,y cùng dấu
Vậy ....................................................
d, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\);\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{15}=\frac{z}{18}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{18}\)từ đó bạn tự giải nha
![](https://rs.olm.vn/images/avt/0.png?1311)
`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.
`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`
`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`
`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{a)}\)\(2^{x+1}.3^y=2^{2x}.3^x\Leftrightarrow\frac{2^{2x}}{2^{x+1}}=\frac{3^y}{3^x}\)
\(\Leftrightarrow2^{x-1}=3^{y-x}\)
\(\Leftrightarrow x-1=y-x=0\)
\(\Leftrightarrow x=y=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{-20}{-2}=10\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=10\\\frac{y}{5}=10\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=30\\y=50\end{cases}}\)
Vậy,........
P/s : sửa đề luôn
làm
từ x:3=y:5
=>\(\frac{y}{5}=\frac{x}{3}\)=\(\frac{y-x}{3-5}\)=\(\frac{-20}{-2}\)= \(10\)
\(\Rightarrow\hept{\begin{cases}\frac{y}{5}x10=10x5=50\\\frac{x}{3}x10=10x3=30\end{cases}}\)
vậy x=30
y=50