Cho \(a,b,c>0\)
cmr : \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\)\(a+b+c\ge3\left(\frac{ab+bc+ca}{a+b+c}\right)\)
\(\Leftrightarrow\)\(a+b+c\ge3\left(\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}\right)\)
\(\Leftrightarrow\)\(a+b+c\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{c+a}\geq \frac{9}{b+c+c+a+c+a}=\frac{9}{3c+2a+b}\)
\(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{a+b}\geq \frac{9}{a+c+a+b+a+b}=\frac{9}{3a+2b+c}\)
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{b+c}\geq \frac{9}{a+b+b+c+b+c}=\frac{9}{3b+2c+a}\)
Cộng theo vế rồi rút gọn ta thu được
\(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\geq 3\left(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\right)\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Áp dụng BĐT cosi ta có
\(\frac{a^6}{b^3}+\frac{b^6}{c^3}+1\ge3\sqrt[3]{\frac{a^6.b^3}{c^3}}=\frac{3a^2b}{c}\)
\(\frac{b^6}{c^3}+\frac{c^6}{a^3}+1\ge\frac{3b^2c}{a}\)
\(\frac{c^6}{a^3}+\frac{a^6}{b^3}+1\ge\frac{3c^2a}{b}\)
Cộng 3 bĐt trên
=> \(2.VT+3\ge3\left(\frac{a^2b}{c}+\frac{b^2c}{a}+\frac{c^2a}{b}\right)=9\)
=> \(VT\ge3\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=1
\(\frac{a+1}{b^2+1}=\frac{\left(a+1\right)\left(b^2+1\right)-b^2\left(a+1\right)}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\)
\(\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{ab+a}{2}\)
Thiết lập các bất đẳng thức tương tự rồi cộng lại ta được:
\(LHS\ge a+b+c+3-\frac{ab+bc+ca+3}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}=3=RHS\)
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
cho a, b, c > 0 thỏa mãn a+b+c=3. Cmr:
\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
\(\frac{a+1}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b\left(a+1\right)}{2}\)
Tương tự: \(\frac{b+1}{c^2+1}\ge b+1-\frac{c\left(b+1\right)}{2}\) ; \(\frac{c+1}{a^2+1}\ge c+1-\frac{a\left(c+1\right)}{2}\)
Cộng vế với vế:
\(VT\ge6-\frac{1}{2}\left(ab+bc+ca+a+b+c\right)\)
\(VT\ge\frac{9}{2}-\frac{1}{2}\left(ab+bc+ca\right)\ge\frac{9}{2}-\frac{1}{6}\left(a+b+c\right)^2=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có: \(LHS\ge3\sqrt[3]{\frac{3\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}}\) (Cô si + nhân cả tử và mẫu với 3(a+b+c) )
Mặt khác áp dụng BĐT quen thuộc \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
với x = ab; y = bc; z = ca thu được: \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\)
Từ đó: \(LHS\ge3\sqrt[3]{\frac{3\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}}\)
\(\ge3\sqrt[3]{\frac{3\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}}=RHS\)(qed)
Áp dụng BĐT Cô-si cho 3 số dương
\(\frac{a}{b};\frac{b}{c};\frac{c}{a}\)ta có :
\(\left(\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{3}\right)^3\ge\frac{a}{b}.\frac{b}{c}.\frac{c}{a}=1\)
\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\) Dấu "=" xảy ra <=> \(a=b=c\)