RÚT GỌN
1+2+3+4+......+n [ n thuộc N ]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{3}x^2y^5\left(\dfrac{-3}{5}x^3y\right)+x^5y^6=\dfrac{-1}{5}x^5y^6+x^5y^6=\dfrac{4}{5}x^5y^6\)
1: Ta có: \(\dfrac{1}{3}x^2y^5\cdot\left(-\dfrac{3}{5}x^3y\right)+x^5y^6\)
\(=\dfrac{-1}{5}x^5y^6+x^5y^6\)
\(=\dfrac{4}{5}x^5y^6\)
1.\(\sqrt{1+2\sqrt{5}+5}=\sqrt{\left(1+\sqrt{5}\right)^2}=1+\sqrt{5}\)
2.\(\sqrt{10-4\sqrt{6}}=\sqrt{4-4\sqrt{6}+6}=\sqrt{\left(2-\sqrt{6}\right)^2}=\left|2-\sqrt{6}\right|=\sqrt{6}-2\) \(\sqrt{15-6\sqrt{6}}=\sqrt{9+6\sqrt{6}+6}=\sqrt{\left(3+\sqrt{6}\right)^2}=3+\sqrt{6}\)
=>\(\sqrt{15-6\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)=\(3+\sqrt{6}-\sqrt{6}+2\)=5
3. Tương tự bằng :\(8-3\sqrt{6}\)
1) \(\sqrt{6+2\sqrt{5}}\) = \(\sqrt{1+2.1.\sqrt{5}+\sqrt{5}^2}\) = \(\sqrt{\left(1+\sqrt{5}\right)^2}\)
2) \(\sqrt{15-6\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)
= \(\sqrt{3^2-2.3.\sqrt{6}+\sqrt{6}^2}\) - \(\sqrt{2^2.2.2.\sqrt{6}+\sqrt{6}^2}\)
= \(\sqrt{\left(3+\sqrt{6}\right)^2}\) - \(\sqrt{\left(2+\sqrt{6}\right)^2}\)
= \(\left|3+\sqrt{6}\right|\) - \(\left|2+\sqrt{6}\right|\)
= 3 + \(\sqrt{6}\) - 2 + \(\sqrt{6}\)
= 1 + 2\(\sqrt{6}\)
3) \(\sqrt{31-10\sqrt{6}}-\sqrt{\left(3-2\sqrt{6}\right)^2}\)
= \(\sqrt{5^2-2.5.\sqrt{6}+\sqrt{6}^2}\) - \(\sqrt{\left(3-2\sqrt{6}\right)^2}\)
= \(\sqrt{\left(5-\sqrt{6}\right)^2}\) - \(\sqrt{\left(3-2\sqrt{6}\right)^2}\)
= \(\left|5-\sqrt{6}\right|\) - \(\left|3-2\sqrt{6}\right|\)
= 5 - \(\sqrt{6}-3-2\sqrt{6}\)
= 2 - 3\(\sqrt{6}\)
Chúc bạn học tốt
\(1,\)Rút gọn : \(\frac{-24}{56};\frac{1212}{-4545}\)
\(\frac{-24}{56}=\frac{-24:8}{56:8}=\frac{-3}{7}\)
\(\frac{1212}{-4545}=\frac{1212:(-101)}{(-4545):(-101)}=\frac{-12}{45}=\frac{-4}{15}\)
Tự so sánh
a, A=3+3^2+3^3+.....+3^100(1)
Nhân 2 vế với 3,ta được:
3A=3^2+3^3+3^4+......+3^101(2)
Lấy(2)-(1),ta được:
2A=3^101-3
b,Thay 2A vào biểu thức , ta được:
3^101-3+3=3^n
3^101=3^n
n=101
Nhớ tích đúng cho mình nha bạn.
nhanh nhanh mk cần gấp
Vì số đầu tiên là 1 và khoảng cách cũng là 1
=> Số số hạng là số cuối cùng hay số số hạng là n
Tổng là :
\(\left(n+1\right)\cdot n\div2\)
\(=\frac{n^2+n}{2}\)
Vậy,.........