Chứng minh rằng
B=3+33+35+........+339 là bội của 273
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A = 5 + 5 2 + 5 3 + . . . + 5 8
= 5(1+5)+ 5 2 (1+5)+ 5 3 (1+5)+...+ 5 7 (1+5)
= 30+5.30+ 5 2 .30+...+ 5 6 .30
= 30.(1+5+ 5 2 +..+ 5 6 )
Vậy A là bội của 30
b, B = 3 + 3 3 + 3 5 + 3 7 + . . . + 3 29
= 3 1 + 3 2 + 3 4 + 3 7 1 + 3 2 + 3 4 +...+ 3 27 1 + 3 2 + 3 4
= 273+273. 3 6 +...+ 3 26 .273
= 273.(1+ 3 6 +...+ 3 26 )
Vậy B là bội của 273
a, đề phải là cm ko chia hết cho 5
A = 5+5^2+(5^3+5^4)+(5^5+5^6)+(5^7+5^8)
= 30 + 5.(5^2+5^3)+5^3.(5^2+5^3)+5^5.(5^2+5^3)
= 30+5.150+5^3.150+5^5.150
= 30+150.(5+5^3+5^5)
Vì 150 chia hết cho 50 => 150.(5+5^3+5^5) chia hết cho 50
Mà 30 ko chia hết cho 50
=> A ko chia hết cho 50
a) \(\overline{aaaaaa}=a.111111=a.3.37037\) \(⋮\)\(37037\)
b) Nhận thấy các hạng tử trong B đều chia hết cho 3 => B chia hết cho 3
\(B=3+3^3+3^5+3^7+...+3^{2017}+3^{2019}+3^{2021}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+....+\left(3^{2017}+3^{2019}+3^{2021}\right)\)
\(=3\left(1+3^2+3^4\right)+3^7\left(1+3^2+3^4\right)+...+3^{2017}\left(1+3^2+3^4\right)\)
\(=\left(1+3^2+3^4\right)\left(3+3^7+...+3^{2017}\right)\)
\(=91\left(3+3^7+....+3^{2017}\right)\)\(⋮\)\(91\)
mà (3;91) = 1
=> B chia hết cho 273
B chia hết cho 273
Còn câu a thì mình không biết nhé, xin lỗi bạn.
Bạn xem lại đề được không? Mình cảm giác 32 phải là 33 !
\(B=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{25}+3^{27}+3^{29}\right)\\ B=\left(3+3^3+3^5\right)+3^4\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^3+3^5\right)\\ B=\left(3+3^3+3^5\right)\left(1+3^4+...+3^{24}\right)\\ B=273\left(1+3^4+...+3^{24}\right)⋮273\)
Vậy B là bội 273
Để một số là bội của 273 <=> số đó chia hết 273
= (3 + 33 + 35) + (37 + 39 + 311) + ... ( 325 + 327 + 329)
= 273 + 36(3 + 33 + 35) +...+ 324 (3 + 33 + 35)
= 273 + 36 . 273 + ... + 324 . 273
= 273(1 + 36 + ...) chia hết 273