cho hàm số y = (3-\(\sqrt{2}\) )x+2
Tính các giá trị tương ứng của x khi y nhận các giá trị sau: 0 ; 1
✔tick ☺❤
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các giá trị của y được thể hiện trong bảng sau:
x | 0 | 1 | 2 | 3 + 2 | 3 - 2 |
y = (3 - 2 )x + 1 | 1 | 4 - 2 | 3 2 - 1 | 8 | 12 - 6 2 |
a) Sau khi tính giá trị của mỗi giá trị theo các giá trị của x đã cho ta được bảng sau:
b) Nhận xét: Cùng một giá trị của biến x, giá trị của hàm số y = 0,5x + 2 luôn luôn lớn hơn giá trị tương ứng của hàm số y = 0,5x là 2 đơn vị.
Thay y=0 vào hàm số, ta được:
\(\left(3-\sqrt{2}\right)x+1=0\)
\(\Leftrightarrow x=\dfrac{-3-\sqrt{2}}{7}\)
x | -2,5 | -2,25 | -2 | -1,75 | -1,5 | -1,25 | -1 |
y = f(x) = 1,2x | -3 | -2,7 | -2,4 | -2,1 | -1,8 | -1,5 | -1,2 |
x | -0,75 | -0,5 | -0,25 | 0 | 0,25 | 0,5 | 0,75 |
y = f(x) = 1,2x | -0,9 | -0,6 | -0,3 | 0 | 0,3 | 0,6 | 0,9 |
x | 1 | 1,25 | 1,5 | 1,75 | 2 | 2,25 | 2,5 |
y = f(x) = 1,2x | 1,2 | 1,5 | 1,8 | 2,1 | 2,4 | 2,7 | 3 |
Bài 1:
Hàm số y=(m-3)x+4 đồng biến trên R khi m-3>0
=>m>3
Hàm số y=(m-3)x+4 nghịch biến trên R khi m-3<0
=>m<3
Bài 4:
a: Vì \(a=3-\sqrt{2}>0\)
nên hàm số \(y=\left(3-\sqrt{2}\right)x+1\) đồng biến trên R
b: Khi x=0 thì \(y=0\left(3-\sqrt{2}\right)+1=1\)
Khi x=1 thì \(y=\left(3-\sqrt{2}\right)\cdot1+1=3-\sqrt{2}+1=4-\sqrt{2}\)
Khi \(x=\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\cdot\sqrt{2}+1=3\sqrt{2}-2+1=3\sqrt{2}-1\)
Khi \(x=3+\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)-1\)
=9-4-1
=9-5
=4
Khi \(x=3-\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)^2-1\)
\(=11-6\sqrt{2}-1=10-6\sqrt{2}\)
Thay x vào ta có:
Dựa vào bảng trên ta thấy:
Khi x tăng, giá trị y của hàm số y=-x+1 giảm
Khi x tăng, giá trị y của hàm số y=x tăng
a) \(f\left( 1 \right) = 3.1 = 3;f\left( { - 2} \right) = 3.\left( { - 2} \right) = - 6;f\left( {\dfrac{1}{3}} \right) = 3.\dfrac{1}{3} = 1\).
b) Ta có: \(f\left( { - 3} \right) = 3.\left( { - 3} \right) = - 9;f\left( { - 1} \right) = 3.\left( { - 1} \right) = - 3\)
\(f\left( 0 \right) = 3.0 = 0;f\left( 2 \right) = 3.2 = 6;f\left( 3 \right) = 3.3 = 9\);
Ta lập được bảng sau
\(x\) | –3 | –2 | –1 | 0 | 1 | 2 | 3 |
\(y\) | –9 | -6 | –3 | 0 | 3 | 6 | 9 |
a, Vì \(5-3\sqrt{2}>0\) nên hs đồng biến trên R
b, \(x=5+3\sqrt{2}\Leftrightarrow y=25-18+\sqrt{2}-1=6+\sqrt{2}\)
c, \(y=0\Leftrightarrow\left(5-3\sqrt{2}\right)x+\sqrt{2}-1=0\Leftrightarrow x=\dfrac{1-\sqrt{2}}{5-3\sqrt{2}}\)
\(\Leftrightarrow x=\dfrac{\left(1-\sqrt{2}\right)\left(5+3\sqrt{2}\right)}{7}=\dfrac{-2\sqrt{2}-1}{7}\)
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
y = 1/2 x2 | 9/2 | 2 | 1/2 | 0 | 1/2 | 2 | 9/2 |
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
y = (-1)/2 x2 | (-9)/2 | -2 | (-1)/2 | 0 | (-1)/2 | -2 | (-9)/2 |
+) khi \(y=0\) ta có \(hs\Leftrightarrow\left(3-\sqrt{2}\right)x+2=0\Leftrightarrow x=\dfrac{-2}{3-\sqrt{2}}=\dfrac{2}{\sqrt{2}-3}\)
+) khi \(y=1\) ta có \(hs\Leftrightarrow\left(3-\sqrt{2}\right)x+2=1\Leftrightarrow x=\dfrac{-1}{3-\sqrt{2}}=\dfrac{1}{\sqrt{2}-3}\)
Thank you 💓