K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

\(a^3+b^3\) chia hết 3

\(a^3+b^3-a-b=a\left(a-1\right)\left(a+1\right)+b\left(b+1\right)\left(b-1\right)\) chia hết 3

nên a+b chia hết 3 =))

AH
Akai Haruma
Giáo viên
16 tháng 8 2018

Lời giải:

Ta có:

\(a^3+b^3\vdots 3\)

\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2\vdots 3\)

\(\Leftrightarrow (a+b)^3\vdots 3\)

Mà do $3$ là số nguyên tố nên \(\Rightarrow a+b\vdots 3\) (đpcm)

17 tháng 10 2021

a: \(a^3-a=a\left(a-1\right)\left(a+1\right)\)

Vì a;a-1;a+1 là ba số nguyên liên tiếp

nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)

hay \(a^3-a⋮6\)

24 tháng 1 2021

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51

Bài này cần dùng một ít kiến thức của lớp 8, bạn có thể tìm hiểu thêm.

undefined

1 tháng 7 2016

a) Phần này dễ, bạn cứ làm theo hướng của phần b là được. Mình sẽ làm phần b khó hơn. 

b) Ta có: a3-a = a.(a-1).(a+1) (với a thuộc Z). Mà a.(a-1).(a+1) là tích của 3 số tự nhiên liên tiếp nên

a.(a-1).(a+1) chia hết cho 3.

 => a3- a chia hết cho 3.

Chứng minh tương tự ta có b3 - b chia hết cho 3 và c3 - c chia hết cho 3 với mọi b,c thuộc N.

=> a3+b3+c- (a+b+c) luôn chia hết cho 3 với mọi a,b,c thuộc N.

Do đó nếu  a3+b3+cchia hết cho 3 thì a+b+c chia hết cho 3 và điều ngược lại cũng đúng.

Vậy đpcm.

2 tháng 7 2016

Tớ làm thêm một cách cho câu b nhé ;) 

Ta có: \(a^3+b^3⋮3\Rightarrow a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2⋮3\) \(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)⋮3\)

Do a và b là các số tự nhiên => \(3ab\left(a+b\right)⋮3=>\left(a+b\right)^3⋮3\)

=> a+b chia hết cho 3 

 

 

29 tháng 8 2020

Bg

a) Gọi số chẵn nhỏ nhất trong ba số chẵn liên tiếp là 2x   (x \(\inℤ\))

=> Tổng ba số chẵn liên tiếp = 2x + (2x + 2) + (2x + 4)

=> 2x + (2x + 2) + (2x + 4) = 2x + 2x + 2 + 2x + 4

=> 2x + (2x + 2) + (2x + 4) = (2x + 2x + 2x) + (2 + 4)

=> 2x + (2x + 2) + (2x + 4) = 2.3x + 6

=> 2x + (2x + 2) + (2x + 4) = 6x + 6.1

=> 2x + (2x + 2) + (2x + 4) = 6.(x + 1) \(⋮\)6

=> Tổng ba số tự nhiên liên tiếp chia hết cho 6

=> ĐPCM

b) Bg

Tổng ba số lẻ liên tiếp luôn là một số lẻ

Mà 6 chẵn

=> Tổng của ba số lẻ liên tiếp không chia hết cho 6

=> ĐPCM

c) Bg

Ta có: a \(⋮\)b và b \(⋮\)c      (a, b, c \(\inℤ\))

Vì a \(⋮\)

=> a = by    (bởi y \(\inℤ\))

Mà b \(⋮\)c

=> by \(⋮\)c

=> a \(⋮\)c

=> ĐPCM

d) Bg

Ta có: P = a + a2 + a3 +...+ a2n      (a, n\(\inℕ\))

=> P = (a + a2) + (a3 + a4)...+ (a2n - 1 + a2n

=> P = [a.(a + 1)] + [a3.(a + 1)] +...+ [a2n - 1.(a + 1)]

=> P = (a + 1).(a + a3 + a2n - 1\(⋮\)a + 1

=> P = a + a2 + a3 +...+ a2n  \(⋮\)a + 1

=> ĐPCM (Điều phải chứng mình)