K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

2x(x5)x(3+2x)=262x(x−5)−x(3+2x)=26

 x[2(x5)(3+2x)]=26x[2(x−5)−(3+2x)]=26

 x(2x1032x)=26

 x(13)=26

x=26:(-13)

x=2

12 tháng 6 2018

a) \(\left(\frac{1}{7}x-\frac{2}{3}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\frac{1}{7}x-\frac{2}{3}=0\\-\frac{1}{5}x+\frac{3}{5}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\frac{1}{7}x=\frac{2}{3}\\-\frac{1}{5}x=-\frac{3}{5}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{14}{3}\\x=3\end{cases}}\)

b)\(\frac{1}{10}x-\frac{4}{5}x+1=0\)

\(\Leftrightarrow x.\left(\frac{1}{10}-\frac{4}{5}\right)+1=0\)

\(\Rightarrow-\frac{7}{10}x=-1\)

\(\Rightarrow x=\frac{10}{7}\)

c)\(\left(2x-\frac{1}{3}\right).\left(5x+\frac{2}{7}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=0\\5x+\frac{2}{7}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{1}{3}\\5x=-\frac{2}{7}\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{6}\\x=-\frac{2}{35}\end{cases}}\)

12 tháng 6 2018

a, (1/7 . x - 2/3) . (-1/5 . x + 3/5) = 0

Suy ra : 1/7 .x -2/3 = 0 hoặc -1/5 .x + 3/5 =0

Vậy : 1/7 .x = 2/3 hoặc -1/5 .x = 3/5

         x =2/3 : 1/7 hoặc x = 3/5 : (-1/5)

        x = 14/3 hoặc x = -3

b, 1/10 .x - 4/5 .x + 1 =0

   x . (1/10 - 4/5) + 1 = 0

   x . (-7/10) + 1 = 0

   x . -7/10 =0 +1 = 1

   x = 1 : (-7/10)

   x = -10/7

c, (2x - 1/3 ) . (5x +2/7) = 0

Suy ra : 2x - 1/3 = 0 hoặc 5x + 2/7 = 0

Vậy : 2x = 1/3 hoặc 5x = 2/7

         x = 1/3 : 2 hoặc x = 2/7 : 5

         x = 1/6 hoặc x = 2/35

  

8 tháng 10 2021

\(\left(x+5\right)\left(2x-5\right)=\left(x+3\right)\left(2x-1\right)\)

\(2x^2-5x+10x-25=2x^2-x+6x-3\)

\(2x^2+5x-25=2x^2+5x-3\)

\(2x^2+5x-25-2x^2-5x+3=0\)

\(-25+3=0\)

\(-22=0\)  (Vô lí)

⇒ không tồn tại x

29 tháng 7 2021

Bài 4: 

a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))

\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3

\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)

\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)

\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)

\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)

\(\Leftrightarrow\) \(2x^2+7x+3=0\)

\(\Delta=7^2-4.2.3=25\)\(\sqrt{\Delta}=5\)

Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:

\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)

Vậy ...

Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được

Bài 5: 

a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)

\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)

\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)

\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)

\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)

Vậy ...

Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\)\(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!

VD1:

a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)

\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)

\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)

Vậy ...

Phần b tương tự nha

c, \(\sqrt{3}x^2-\sqrt{12}=0\)

\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)

\(\Leftrightarrow\) \(x^2=2\)

\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)

Vậy ...

d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)

\(\Leftrightarrow\) \(x-1=5\)

\(\Leftrightarrow\) \(x=6\)

Vậy ...

VD2: 

Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)

b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))

\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(x^2=3\)

\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)

Vậy ...

c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))

\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x^2-4x=0\)

\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)

29 tháng 7 2021

cảm ơn bn nhiều nha

1 tháng 7 2016

\(2x^4-x^3+2x^2+1=2x^4-2x^3+2x^2+x^3-x^2+x+x^2-x+1\\ \)

\(=2x^2\left(x^2-x+1\right)+x\left(x^2-x+1\right)+\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(2x^2+x+1\right)\)

Vậy a = 2; b = 1; c = 1.

1 tháng 7 2016

Làm rõ hơn đi bạn

23 tháng 6 2016

\(\left(2x-1\right)\left(x^2-x+1\right)-2x^3+3x^2=2\)

\(2x^3-x^2-2x^2+x+2x-1-2x^3+3x^2=2\)

\(3x-1=2\)

\(3x=3\)

\(x=1\)

11 tháng 10 2017
Có ai ko tl đi
21 tháng 6 2017

B1: để x là số nguyên thì: 5 chia hết cho 2x+1

=> \(2x+1\in U\left(5\right)\)

+> \(2x+1\in\left\{1;-1;5;-5\right\}\)

=> \(x\in\left\{0;-1;2;-3\right\}\)

29 tháng 1 2022

xc{0;-1;2;-3}

HT

@@@@@@@@@@@@