(x-3)^2=25 x-3=7
1/2x-2/3=1/1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(7x+25=144\)
\(\Leftrightarrow7x=119\)
hay x=17
b: Ta có: \(33-12x=9\)
\(\Leftrightarrow12x=24\)
hay x=2
c: Ta có: \(128-3\left(x+4\right)=23\)
\(\Leftrightarrow3\left(x+4\right)=105\)
\(\Leftrightarrow x+4=35\)
hay x=31
d: Ta có: \(71+\left(726-3x\right)\cdot5=2246\)
\(\Leftrightarrow5\left(726-3x\right)=2175\)
\(\Leftrightarrow726-3x=435\)
\(\Leftrightarrow3x=291\)
hay x=97
e: Ta có: \(720:\left[41-\left(2x+5\right)\right]=40\)
\(\Leftrightarrow41-\left(2x+5\right)=18\)
\(\Leftrightarrow2x+5=23\)
\(\Leftrightarrow2x=18\)
hay x=9
tìm x biết:
(3x-1) [- 1/2x+5]=0
1/4+1/3:(2x-1)=-5
[2x+3/5]2 - 9/25=0
-5(x+1/5)-1/2(x-2/3)=3/2x - 5 /6
[x+1/2]x [2/3-2x]=0
17/2-|2x-3/4|=-7/4
2/3x-1/2x =5/12
(x+1/5)2+17/25=26/25
[x.44/7+3/7].11/5-3/7=-2
3[3x-1/2]+1/9=0
Toán lớp 6Tìm x
Trả lời Câu hỏi tương tự
Chưa có ai trả lời câu hỏi này,bạn hãy là người đâu tiên giúp nguyenvanhoang giải bài toán này !
9) Ta có: \(\dfrac{2x+5}{x+3}+1=\dfrac{4}{x^2+2x-3}-\dfrac{3x-1}{1-x}\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)+x^2+2x-3=4+\left(3x-1\right)\left(x+3\right)\)
\(\Leftrightarrow2x^2-2x+5x-5+x^2+2x-3-4-3x^2-10x+x+3=0\)
\(\Leftrightarrow-4x=9\)
hay \(x=-\dfrac{9}{4}\)
10) Ta có: \(\dfrac{x-1}{x+3}-\dfrac{x}{x-3}=\dfrac{7x-3}{9-x^2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3-7x}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(x^2-4x+3-x^2-3x-3+7x=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\notin\left\{3;-3\right\}\)}
11) Ta có: \(\dfrac{5+9x}{x^2-16}=\dfrac{2x-1}{x+4}+\dfrac{3x-1}{x-4}\)
\(\Leftrightarrow\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\dfrac{\left(3x-1\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{9x+5}{\left(x-4\right)\left(x+5\right)}\)
Suy ra: \(2x^2-9x+4+3x^2+12x-x-4-9x-5=0\)
\(\Leftrightarrow5x^2-7x=0\)
\(\Leftrightarrow x\left(5x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{5}\end{matrix}\right.\)
12) Ta có: \(\dfrac{2x}{2x-1}+\dfrac{x}{2x+1}=1+\dfrac{4}{\left(2x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow\dfrac{2x\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{x\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{4x^2-1+4}{\left(2x-1\right)\left(2x+1\right)}\)
Suy ra: \(4x^2+2x+2x^2-x-4x^2-3=0\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2+3x-2x-3=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)
a) x(2x - 1) - (x - 2)(2x + 3) = 5
2x2 - x - 2x2 - 3x + 4x + 6 = 5
0x = -1 (vô lý)
Vậy không tìm được x
b) (x - 3)2 - 25 = 0
(x - 3)2 - 52 = 0
(x - 3 - 5)(x - 3 + 5) = 0
(x - 8)(x + 2) = 0
\(\Rightarrow\) x - 8 = 0 hoặc x + 2 = 0
*) x - 8 = 0
x = 0 + 8
x = 8
*) x + 2 = 0
x = 0 - 2
x = -2
Vậy x = 8; x = -2
c) (x - 1)(2 - x) + (x + 3)2 = 4 - 2x
2x - x2 - 2 + x + x2 + 6x + 9 = 4 - 2x
9x + 7 = 4 - 2x
9x + 2x = 4 - 7
11x = -3
x = \(\dfrac{-3}{11}\)
Vậy x = \(\dfrac{-3}{11}\)
\(e,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)
\(\Leftrightarrow4x^2-24x+36-4x^2+1=10\)
\(\Leftrightarrow-24x+37=10\)
\(\Leftrightarrow-24x=-27\)
\(\Leftrightarrow x=\dfrac{9}{8}\)
\(f,25\left(x+3\right)^2+ \left(1-5x\right)\left(1+5x\right)=8\)
\(\Leftrightarrow25\left(x^2+6x+9\right)+\left(1-25x^2\right)=8\)
\(\Leftrightarrow25x^2+150x+225+1-25x^2=8\)
\(\Leftrightarrow150x+226=8\)
\(\Leftrightarrow150x=-218\)
\(\Leftrightarrow x=-\dfrac{109}{75}\)
\(g,9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)
\(\Leftrightarrow9\left(x^2+2x+1\right)-\left(9x^2-4\right)=10\)
\(\Leftrightarrow9x^2+18x+9-9x^2+4=10\)
\(\Leftrightarrow18x+13=10\)
\(\Leftrightarrow18x=-3\)
\(\Leftrightarrow x=-\dfrac{1}{6}\)
\(h,-4\left(x-1\right)^2+\left(2x-1\right)\left(2x+1\right)=-3\)
\(\Leftrightarrow-4\left(x^2-2x+1\right)+\left(4x^2-1\right)=-3\)
\(\Leftrightarrow-4x^2+8x-4+4x^2-1=-3\)
\(\Leftrightarrow8x-5=-3\)
\(\Leftrightarrow8x=2\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
#\(Toru\)
1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)
ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)
<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)
<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)
<=> \(\frac{3x+10}{x^2+2x-3}=0\)
<=> \(3x+10=0\)
<=> \(x=-\frac{10}{3}\)
3: \(\left(x+5\right)\left(x^2-5x+25\right)-x\left(x-4\right)^2+16x\)
\(=x^3+125-x^3+8x^2-16x+16x\)
\(=8x^2+125\)
g. \(\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{1}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)
f. \(\frac{2}{3}x-\frac{1}{2}x=\frac{5}{12}\)
\(\Leftrightarrow x\left(\frac{2}{3}-\frac{1}{2}\right)=\frac{5}{12}\)
\(\Leftrightarrow x\left(\frac{4}{6}-\frac{3}{6}\right)=\frac{5}{12}\)
\(\Leftrightarrow\frac{1}{6}x=\frac{5}{12}\)
\(\Leftrightarrow x=\frac{5}{12}\div\frac{1}{6}\)
\(\Leftrightarrow x=\frac{30}{12}=\frac{5}{2}\)
a) \(\left(x+3\right)^2-\left(x-2\right)^3=\left(x+5\right)\left(x^2-5x+25\right)-108\)
\(\Leftrightarrow x^2+6x+9-x^2+4x-4=x^3-5x^2+25x+5x^2-25x+125-108\)
\(\Leftrightarrow x^3-10x+12=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+6\right)=0\)
\(\Leftrightarrow x=2\)( do \(x^2+2x+6=\left(x+1\right)^2+4\ge4>0\))
\(\left(x-3\right)^2=25=\left(\pm5\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x-3=5\\x-3=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=8\\x=-2\end{cases}}\)
Vậy,........
Học tốt ^^
x - 3 = 7
x = 7 + 3
x = 10
Học tốt ^^