K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

cho mình hỏi, cái pt 1 sao VT cũng có y^2

VP cũng có y^2. hay là nhầm đề nhỉ

NV
13 tháng 12 2020

- Với \(y=0\) không phải nghiệm

- Với \(y\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{x}{y}+\dfrac{1}{y}=7\\x^2+\dfrac{x}{y}+\dfrac{1}{y^2}=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{y}+\dfrac{x}{y}=7\\\left(x+\dfrac{1}{y}\right)^2-\dfrac{x}{y}=13\end{matrix}\right.\)

\(\Rightarrow\left(x+\dfrac{1}{y}\right)^2+x+\dfrac{1}{y}-20=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{y}=4\\x+\dfrac{1}{y}=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4-\dfrac{1}{y}\\x=-5-\dfrac{1}{y}\end{matrix}\right.\)

Thế vào pt đầu...

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} xy+1=7y-x\\ (xy+1)^2-xy=13y^2\end{matrix}\right.\)

\(\Rightarrow (7y-x)^2-xy=13y^2\)

\(\Leftrightarrow 36y^2-15xy+x^2=0\)

\(\Leftrightarrow (12y-x)(3y-x)=0\)

\(\Rightarrow \left[\begin{matrix} x=12y\\ x=3y\end{matrix}\right.\)

Nếu \(x=12y\). Thay vào PT(1):

\(12y.y+12y+1=7y\)

\(\Leftrightarrow 12y^2+5y+1=0\) (pt vô nghiệm)

Nếu \(x=3y\Rightarrow 3y.y+3y+1=7y\)

\(\Leftrightarrow 3y^2-4y+1=0\)

\(\Leftrightarrow (3y-1)(y-1)=0\Rightarrow \left[\begin{matrix} y=\frac{1}{3}\rightarrow x=1\\ y=1\rightarrow x=3\end{matrix}\right.\)

Vậy HPT có nghiệm \((x;y)=(1;\frac{1}{3}); (3;1)\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Hoặc đến đoạn $36y^2-15xy+x^2=0$ nếu bạn không biết xử lý ra sao thì có thể thực hiện cách sau:

Dễ thấy $y=0$ không phải nghiệm của HPT. Do đó $y\neq 0$

Đặt $x=ty$

\(\Rightarrow 36y^2-15.ty.y+(ty)^2=0\)

\(\Leftrightarrow y^2(36-15t+t^2)=0\)

\(\Rightarrow 36-15t+t^2=0\) (do $y\neq 0$)

Đến đây ta giải PT bậc 2 một ẩn như bình thường để tìm ra mối quan hệ của $x,y$

21 tháng 1 2020

b, \(x^3+3x^2y-4y^3+x-y=0\)

\(\Leftrightarrow x^3-x^2y+4x^2y-4xy^2+4xy^2-4y^3+x-y=0\)

\(\Leftrightarrow x^2\left(x-y\right)+4xy\left(x-y\right)+4y^2\left(x-y\right)+\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+4xy+4y^2+1\right)=0\)

\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)

Khi đó pt (2) của hệ trở thành: 

\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)

\(\Leftrightarrow\left(x^2+5x+5\right)^2-1=24\)

\(\Leftrightarrow\left(x^2+5x+5\right)^2-5^2=0\)

\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy hệ có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right),\left(-5;-5\right)\right\}\)