Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng :
Cho hai số hữu tỉ bất kì luôn tồn tịa 1 số hữu tỉ giữa chúng
+) Xét \(\hept{\begin{cases}x=\frac{a}{m}\\y=\frac{b}{m}\end{cases}}\)\(\left(a;b;m\in Z;m>0\right)\)
Ta có : \(x=\frac{a}{m}=\frac{2a}{2m}=\frac{a.a}{2m}< \frac{a+b}{2m}\)( vì a<b)
\(\Rightarrow x< z\) (1)
+) Xét \(a< b\Rightarrow a+b< b+b\)
\(\Rightarrow a+b< b^2\)
\(\Rightarrow\frac{2b}{2m}>\frac{a+b}{2m}\)
\(\Rightarrow y>z\)(2)
Từ (1) và (2) \(\Leftrightarrow x< y< z\)
Vậy .....
+) Xét \(\hept{\begin{cases}x=\frac{a}{m}\\y=\frac{b}{m}\end{cases}}\)\(\left(a;b;m\in Z;m>0\right)\)
Ta có : \(x=\frac{a}{m}=\frac{2a}{2m}=\frac{a.a}{2m}< \frac{a+b}{2m}\)( vì a<b)
\(\Rightarrow x< z\) (1)
+) Xét \(a< b\Rightarrow a+b< b+b\)
\(\Rightarrow a+b< b^2\)
\(\Rightarrow\frac{2b}{2m}>\frac{a+b}{2m}\)
\(\Rightarrow y>z\)(2)
Từ (1) và (2) \(\Leftrightarrow x< y< z\)
Vậy .....