K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2021

= 4x + 4

như thế x là.....

sorry mik mới lớp 5

1 tháng 9 2020

\(\text{a)}\Rightarrow x-1-x-1-x+2=5\)

\(\Rightarrow-x=5\)

\(\Rightarrow x=-5\)

     \(\text{Vậy x=-5}\)

\(\text{b)}\left(2x-1\right)^2-\left(2x+3\right)^2=7\)

\(\Rightarrow\left(4x^2-4x+1\right)-\left(4x^2+12x+9\right)=7\)

\(\Rightarrow4x^2-4x+1-4x^2-12x-9=7\)

\(\Rightarrow-16x-8=7\)

\(\Rightarrow-16x=15\)

\(\Rightarrow x=\frac{-15}{16}\)

      \(\text{Vậy }x=\frac{-15}{16}\)

\(\text{c)}\Rightarrow16x^2-9-\left(16x^2-8x+1\right)=8\)

\(\Rightarrow-9+8x-1=8\)

\(\Rightarrow8x=18\)

\(\Rightarrow x=\frac{18}{8}=\frac{9}{4}\)

      \(\text{Vậy }x=\frac{9}{4}\)

\(\text{Phần d số rất lẻ, có thể bạn chép sai đề nên mình ko chữa nha~}\)

14 tháng 10 2021

1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)

\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)

\(\Leftrightarrow x=2\)

3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)

\(\Leftrightarrow6x=6\)

hay x=1

28 tháng 5 2022

`2//(5x-8)-3(4x-5)=4(3x-4)`

`<=>5x-8-12x+15=12x-16`

`<=>-19x=-23`

`<=>x=23/19`     Vậy `x=23/19`

`3//2(x^3-1)-2x^2(x+2x^4)+(4x^5+4)x=6`

`<=>2x^3-2-2x^3-4x^6+4x^6+4x=6`

`<=>4x=8`

`<=>x=2`     Vậy `x=2`

28 tháng 5 2022

`A`

24 tháng 7 2016

        (2x - 1)(4x2 + 2x + 1) = x(x-8)

<=>                   (2x)3 - 1= x2 - 8x

<=>     (8x3 - x2) + (8x - 1) = 0

<=>     x2(8x - 1) + (8x - 1) = 0Σ

<=>            (x2 + 1)(8x - 1) = 0

  • x2 + 1 = 0 => x2 = -1 ( vô lý )
  • 8x - 1 = 0 => 8x = 1 => x = 0,125  

 

 

 

 

25 tháng 6 2021

`A=-x^2+2x+10`

`=-(x^2-2x)+10`

`=-(x-1)^2+11<=11`

Dấu "=" xảy ra khi `x=1`.

`B=4x-2x^2+8`

`=-2(x^2-2x)+8`

`=-2(x^2-2x+1)+10`

`=-2(x-1)^2+10<=10`

Dấu "=" xảy ra khi `x=1`

`C=-x^2-x+1`

`=-(x^2+x)+1`

`=-(x^2+x+1/4)+1+1/4`

`=-(x+1/2)^2+5/4<=5/4`

Dấu "=" xảy ra khi `x=-1/2`

`D=-4x^2+6x+3`

`=-(4x^2-6x)+3`

`=-(4x^2-6x+9/4)+21/4`

`=-(2x-3/2)^2+21/4<=21/4`

Dấu "=' xảy ra khi `2x=3/2<=>x=3/4`

25 tháng 6 2021

\(a,A=-x^2+2x+10=-x^2+2x-1+11=-\left(x^2-2x+1\right)+11\)

\(=11-\left(x-1\right)^2\)

- Thấy : \(\left(x-1\right)^2\ge0\forall x\in R\)

\(\Rightarrow A=11-\left(x-1\right)^2\le11\)

Vậy MaxA = 11 <=> x = 1 .

\(b,B=-2x^2+4x-2+10=-2\left(x^2-2x+1\right)+10=10-2\left(x-1\right)^2\)

- Thấy : \(\left(x-1\right)^2\ge0\forall x\in R\)

\(\Rightarrow B=10-2\left(x-1\right)^2\le10\)

Vậy MaxB = 10 <=> x = 1 .

\(c,C=-x^2-\dfrac{1}{2}.2.x-\dfrac{1}{4}+\dfrac{5}{4}=\dfrac{5}{4}-\left(x+\dfrac{1}{2}\right)^2\)

- Thấy : \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\in R\)

\(\Rightarrow C=\dfrac{5}{4}-\left(x+\dfrac{1}{2}\right)^2\le\dfrac{5}{4}\)

Vậy MaxC = 5/4 <=> x = -1/2 .

\(d,D=-4x^2+6x+3=-4x^2+2x.2.\dfrac{6}{4}-\dfrac{9}{4}+\dfrac{21}{4}=-\left(4x^2-6x+\dfrac{9}{4}\right)+\dfrac{21}{4}\)

\(=\dfrac{21}{4}-\left(2x-\dfrac{3}{2}\right)^2\)

- Thấy : \(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\in R\)

\(\Rightarrow A=\dfrac{21}{4}-\left(2x-\dfrac{3}{2}\right)^2\le\dfrac{21}{4}\)

Vậy MaxD=21/4 <=> x = 3/4 .

a: ĐKXĐ: x<>2; x<>0

b: \(M=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{\left(x^2-2x\right)\left(x-2\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x^3-2x^2-2x^2+4x}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)

\(=\dfrac{x}{2}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)

c: M>=-3

=>(x+1+6x)/2x>=0

=>(7x+1)/x>=0

=>x>0 hoặc x<=-1/7