Tìm x \(\inℚ\)
| 2x + 1 | + | x + 8 | = 4x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a)}\Rightarrow x-1-x-1-x+2=5\)
\(\Rightarrow-x=5\)
\(\Rightarrow x=-5\)
\(\text{Vậy x=-5}\)
\(\text{b)}\left(2x-1\right)^2-\left(2x+3\right)^2=7\)
\(\Rightarrow\left(4x^2-4x+1\right)-\left(4x^2+12x+9\right)=7\)
\(\Rightarrow4x^2-4x+1-4x^2-12x-9=7\)
\(\Rightarrow-16x-8=7\)
\(\Rightarrow-16x=15\)
\(\Rightarrow x=\frac{-15}{16}\)
\(\text{Vậy }x=\frac{-15}{16}\)
\(\text{c)}\Rightarrow16x^2-9-\left(16x^2-8x+1\right)=8\)
\(\Rightarrow-9+8x-1=8\)
\(\Rightarrow8x=18\)
\(\Rightarrow x=\frac{18}{8}=\frac{9}{4}\)
\(\text{Vậy }x=\frac{9}{4}\)
\(\text{Phần d số rất lẻ, có thể bạn chép sai đề nên mình ko chữa nha~}\)
1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)
\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)
\(\Leftrightarrow x=2\)
3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)
\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)
\(\Leftrightarrow6x=6\)
hay x=1
`2//(5x-8)-3(4x-5)=4(3x-4)`
`<=>5x-8-12x+15=12x-16`
`<=>-19x=-23`
`<=>x=23/19` Vậy `x=23/19`
`3//2(x^3-1)-2x^2(x+2x^4)+(4x^5+4)x=6`
`<=>2x^3-2-2x^3-4x^6+4x^6+4x=6`
`<=>4x=8`
`<=>x=2` Vậy `x=2`
(2x - 1)(4x2 + 2x + 1) = x(x-8)
<=> (2x)3 - 13 = x2 - 8x
<=> (8x3 - x2) + (8x - 1) = 0
<=> x2(8x - 1) + (8x - 1) = 0Σ
<=> (x2 + 1)(8x - 1) = 0
`A=-x^2+2x+10`
`=-(x^2-2x)+10`
`=-(x-1)^2+11<=11`
Dấu "=" xảy ra khi `x=1`.
`B=4x-2x^2+8`
`=-2(x^2-2x)+8`
`=-2(x^2-2x+1)+10`
`=-2(x-1)^2+10<=10`
Dấu "=" xảy ra khi `x=1`
`C=-x^2-x+1`
`=-(x^2+x)+1`
`=-(x^2+x+1/4)+1+1/4`
`=-(x+1/2)^2+5/4<=5/4`
Dấu "=" xảy ra khi `x=-1/2`
`D=-4x^2+6x+3`
`=-(4x^2-6x)+3`
`=-(4x^2-6x+9/4)+21/4`
`=-(2x-3/2)^2+21/4<=21/4`
Dấu "=' xảy ra khi `2x=3/2<=>x=3/4`
\(a,A=-x^2+2x+10=-x^2+2x-1+11=-\left(x^2-2x+1\right)+11\)
\(=11-\left(x-1\right)^2\)
- Thấy : \(\left(x-1\right)^2\ge0\forall x\in R\)
\(\Rightarrow A=11-\left(x-1\right)^2\le11\)
Vậy MaxA = 11 <=> x = 1 .
\(b,B=-2x^2+4x-2+10=-2\left(x^2-2x+1\right)+10=10-2\left(x-1\right)^2\)
- Thấy : \(\left(x-1\right)^2\ge0\forall x\in R\)
\(\Rightarrow B=10-2\left(x-1\right)^2\le10\)
Vậy MaxB = 10 <=> x = 1 .
\(c,C=-x^2-\dfrac{1}{2}.2.x-\dfrac{1}{4}+\dfrac{5}{4}=\dfrac{5}{4}-\left(x+\dfrac{1}{2}\right)^2\)
- Thấy : \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\in R\)
\(\Rightarrow C=\dfrac{5}{4}-\left(x+\dfrac{1}{2}\right)^2\le\dfrac{5}{4}\)
Vậy MaxC = 5/4 <=> x = -1/2 .
\(d,D=-4x^2+6x+3=-4x^2+2x.2.\dfrac{6}{4}-\dfrac{9}{4}+\dfrac{21}{4}=-\left(4x^2-6x+\dfrac{9}{4}\right)+\dfrac{21}{4}\)
\(=\dfrac{21}{4}-\left(2x-\dfrac{3}{2}\right)^2\)
- Thấy : \(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\in R\)
\(\Rightarrow A=\dfrac{21}{4}-\left(2x-\dfrac{3}{2}\right)^2\le\dfrac{21}{4}\)
Vậy MaxD=21/4 <=> x = 3/4 .
a: ĐKXĐ: x<>2; x<>0
b: \(M=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{\left(x^2-2x\right)\left(x-2\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x^3-2x^2-2x^2+4x}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)
\(=\dfrac{x}{2}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)
c: M>=-3
=>(x+1+6x)/2x>=0
=>(7x+1)/x>=0
=>x>0 hoặc x<=-1/7