có 7 số hữu tỉ đc sếp trên 1 đường tròn sao cho tích của 2 số hữu tỉ cạnh nhau =\(\frac{16}{49}\)
các số hữu tỉ ko giống nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{7};\frac{4}{7};\frac{4}{7};\frac{4}{7};\frac{4}{7};\frac{4}{7};\frac{4}{7}\)
Gọi 7 số hữu tỉ đã cho lần lượt là: a1; a2; a3; a4; a5; a6; a7
Theo bài ra, ta có: a1.a2 = a2.a3 = a3.a4 = a4.a5 = a5.a6 = a6.a7 = a7.a1
\(\Rightarrow\)a1 = a2 = a3 = a4 = a5 = a6 = a7
Nên a1.a2 = a2.a3 = a3.a4 = a4.a5 = a5.a6 = a6.a7 = a7.a1 = \(\frac{9}{25}\)
mà \(\frac{9}{25}=\left(-\frac{3}{5}\right)^2\) hoặc \(\frac{9}{25}=\left(\frac{3}{5}\right)^2\)
\(\Rightarrow\)a1 = a2 = a3 = a4 = a5 = a6 = a7 = \(-\frac{3}{5}\)hoặc a1 = a2 = a3 = a4 = a5 = a6 = a7 = \(\frac{3}{5}\)
Vậy 7 số hữu tỉ cần tìm bằng nhau và bằng \(\frac{3}{5}\)hoặc \(-\frac{3}{5}\)
Có:
\(a_1.a_2=\frac{1}{16};a_2.a_3=\frac{1}{16}\Rightarrow a_1=a_3\)
Tương tự như vậy ta có:
Các a???dều bằng nhau hết.
Qua đó ta có chúng thuộc 1 phần 4 hoặc -1 phần 4.
Chúc em học tốt^^