K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

Áp dụng tính chất dãy tỉ số bằng nhua ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

Mà \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)(đpcm)

14 tháng 8 2018

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

                                                                                     đpcm

25 tháng 10 2020

Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

=> \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\) (Vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\))

=> \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)(đpcm)

18 tháng 11 2021

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)=>\(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\) (1)

mà \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)

Từ (1) và (2) ta suy ra ĐPCM

18 tháng 11 2021

nhanh lên giúp mik

17 tháng 7 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có: \(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^3=\left(\frac{b}{d}\right)^3=\frac{b^3}{d^3}\left(1\right)\)

\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\frac{b^3k^3+b^3}{d^3k^3+d^3}=\frac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\frac{b^3}{d^3}\left(2\right)\)

Từ (1!) và (2) => \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)

16 tháng 8 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Thay vào đẳng thức ta có :

\(\frac{bk-b}{bk}=\frac{dk-d}{dk}\)

\(\frac{b\left(k-1\right)}{bk}=\frac{d\left(k-1\right)}{dk}\)

\(\frac{k-1}{k}=\frac{k-1}{k}\left(đpcm\right)\)

23 tháng 2 2020

Vì \(a,b,c,d\ne0\) \(\Rightarrow\frac{a}{b}\) \(=\frac{c}{d}\)  \(=k\left(k\ne0\right)\)

 \(\Rightarrow a=kb,c=kd\) 

\(\Rightarrow\frac{a-b}{a}\) \(=\frac{kb-b}{kb}\) \(=\frac{b\left(k-1\right)}{kb}\) \(=\frac{k-1}{k}\) \(\left(1\right)\)

     \(\frac{c-d}{c}\) \(=\frac{kd-d}{kd}\) \(=\frac{d\left(k-1\right)}{kd}\) \(=\frac{k-1}{k}\) \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\frac{a-b}{a}\) \(=\frac{c-d}{c}\)

24 tháng 11 2019

Bài 1:

Ta có: \(\frac{ab}{a+b}=ab.\frac{1}{a+b}\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b}{4}+\frac{a}{4}\)

Tương tự các BĐT còn lại rồi cộng theo vế ta có d9pcm.

Bài 2: 2 bài đều dùng Svac cả!

24 tháng 11 2019

Bài 2a làm bên h rồi nên chụp lại thôi!

 (cần thì ib t gửi link cho)

16 tháng 8 2018

\(\frac{a}{b}=\frac{c}{d}\)

Áp dụng tính chát dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

Vậy:   \(\frac{a}{b}=\frac{a+c}{b+d}\)

16 tháng 8 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(đpcm\right)\)

#

10 tháng 7 2019

Mình chỉ làm bài 1a, và bài 3 thôi nhé,còn lại là bạn tự làm nhé

Bài 1:

a, Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\left[\frac{a}{b}\right]^2=\left[\frac{c}{d}\right]^2=\left[\frac{a+c}{b+d}\right]^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{(a+c)^2}{(b+d)^2}\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)

Bài 3 : Sửa đề : Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

CM : a = b = c

10 tháng 7 2019

Cách 1 : Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

vì \(a+b+c\ne0\)

\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)

Do đó : \(a=b=c\).

Cách 2 : Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=m\), ta có : \(a=bm,b=cm,c=am\)

Do đó : \(a=bm=m(mc)=m\left[m(ma)\right]\)

\(\Rightarrow a=m^3a\Rightarrow m^3=1(a\ne0)\Rightarrow m=1\)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)

Cách 3 : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}=\left[\frac{a}{b}\right]^3\Rightarrow1=\left[\frac{a}{b}\right]^3\Rightarrow\frac{a}{b}=1\)

Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)

12 tháng 6 2016

aaps dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{c+d+b}\)

\(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)

=>đpcm

12 tháng 6 2016

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)

Vậy \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)

NV
13 tháng 5 2019

\(P=\left(b+c+d\right)\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)=1+\frac{b}{c}+\frac{b}{d}+\frac{c}{b}+1+\frac{c}{d}+\frac{d}{b}+\frac{d}{c}+1\)

\(=3+\frac{b}{c}+\frac{b}{d}+\frac{c}{d}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}\)

Mặt khác do \(b\le c\le d\Rightarrow\left(d-c\right)\left(c-b\right)\ge0\)

\(\Leftrightarrow cd-bd-c^2+bc\ge0\Leftrightarrow bc+cd\ge c^2+bd\)

\(\Leftrightarrow\frac{bc+cd}{cd}\ge\frac{c^2+bd}{cd}\Leftrightarrow\frac{b}{d}+1\ge\frac{c}{d}+\frac{b}{c}\)

\(\frac{bc+cd}{bc}\ge\frac{c^2+bd}{bc}\Leftrightarrow\frac{d}{b}+1\ge\frac{c}{b}+\frac{d}{c}\)

\(\Leftrightarrow\frac{b}{d}+\frac{d}{b}+2\ge\frac{b}{c}+\frac{c}{d}+\frac{c}{b}+\frac{d}{c}\)

\(\Leftrightarrow2\left(\frac{b}{d}+\frac{d}{b}\right)+2\ge\frac{b}{c}+\frac{b}{d}+\frac{c}{d}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}=P\)

\(a\le b\le d\le2a\Rightarrow\left\{{}\begin{matrix}\frac{1}{2}\le\frac{b}{d}\le1\\1\le\frac{d}{b}\le2\end{matrix}\right.\)

\(\Rightarrow\left(\frac{b}{d}-1\right)\left(\frac{d}{b}-2\right)\ge0\Leftrightarrow1-2\frac{b}{d}-\frac{d}{b}+2\ge0\)

\(\Leftrightarrow\frac{b}{d}+\frac{d}{b}\le3-\frac{b}{d}\le3-\frac{1}{2}=\frac{5}{2}\)

\(\Rightarrow P\le2.\frac{5}{2}+2=7\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=c=a\\d=2a\end{matrix}\right.\)

3 tháng 6 2019

Cảm ơn ạ