K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 5 2021

Đề bài sai, sửa đề: \(2\le\sqrt{x^2+y^2}+\sqrt{xy}\le\sqrt{6}\)

Đặt \(P=\sqrt{x^2+y^2}+\sqrt{xy}>0\)

\(\Rightarrow P^2=x^2+y^2+xy+2\sqrt{\left(x^2+y^2\right)xy}\ge x^2+y^2+xy+2\sqrt{2xy.xy}\)

\(\Rightarrow P^2\ge x^2+y^2+\left(2\sqrt{2}+1\right)xy\ge x^2+y^2+2xy=4\)

\(\Rightarrow P\ge2\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;0\right);\left(0;2\right)\)

Lại có: \(P^2=x^2+y^2+xy+2\sqrt{\left(x^2+y^2\right)xy}=x^2+y^2+xy+\sqrt{4xy.\left(x^2+y^2\right)}\)

\(\Rightarrow P^2\le x^2+y^2+xy+\dfrac{1}{2}\left(4xy+x^2+y^2\right)=\dfrac{3}{2}\left(x+y\right)^2=6\)

\(\Rightarrow P\le\sqrt{6}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{3-\sqrt{3}}{3};\dfrac{3+\sqrt{3}}{3}\right)\)

29 tháng 7 2015

sửa theo cách thứ nhất bạn!!

Uầy đề sai đâu ta

\(A=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{xy}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\frac{xz}{\left(x+z\right)\left(y+z\right)}}\)

Áp dụng bđt AM-GM ta có

\(A\le\frac{y}{x+y}+\frac{z}{x+z}+\frac{x}{x+y}+\frac{y}{y+z}+\frac{x}{x+z}+\frac{y}{y+z}=3\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{2020}{3}}\)

12 tháng 3 2020

Cứ tưởng áp dụng Cô si cho 2 tổng ở mẫu thôi :) quên là còn áp dụng như này :) nhưng bạn còn sai 1 chỗ nhé 

\(\sqrt{a.b}\le\frac{a}{2}+\frac{b}{2}.\) MaxA =3/2 :v

6 tháng 8 2019

Áp dụng cô si

\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\\\frac{1}{c}+\frac{1}{b}\ge2\sqrt{\frac{1}{cb}}\\\frac{1}{a}+\frac{1}{c}\ge2\sqrt{\frac{1}{ac}}\end{cases}}\)\(\Rightarrow\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}\)

\("="\Leftrightarrow a=b=c=0\)

\(\hept{\begin{cases}\sqrt{x}\le\frac{x+1}{2}\\\sqrt{y-1}\le\frac{y-1+1}{2}\\\sqrt{z-2}\le\frac{z-2+1}{2}\end{cases}}\)\(\Rightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+1+y-1+1+z-2+1}{2}\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+y+z}{2}\)

\("="\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)

18 tháng 10 2020

Sửa ĐK của c) : a, b, c > 0

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\)

\(\frac{1}{b}+\frac{1}{c}\ge2\sqrt{\frac{1}{bc}}=\frac{2}{\sqrt{bc}}\)

\(\frac{1}{c}+\frac{1}{a}\ge2\sqrt{\frac{1}{ca}}=\frac{2}{\sqrt{ca}}\)

Cộng các vế tương ứng

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ab}}+\frac{2}{\sqrt{bc}}+\frac{2}{\sqrt{ca}}\)

=> \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)

=> đpcm

Đẳng thức xảy ra khi a = b = c

Áp dụng bđt AM-GM ta có

\(x^2-xy+y^2\ge x^2+y^2-\frac{x^2+y^2}{2}=\frac{x^2+y^2}{2}\)

\(\Rightarrow\frac{x+y}{x^2-xy+y^2}\le\frac{2\left(x+y\right)}{x^2+y^2}\le\frac{2\sqrt{2\left(x^2+y^2\right)}}{x^2+y^2}=\frac{2\sqrt{2}}{\sqrt{x^2+y^2}}\)

Dấu "=" xảy ra khi x=y=1

AH
Akai Haruma
Giáo viên
10 tháng 2 2018

Lời giải:

Đặt biểu thức đã cho là $A$

\(A=\sqrt{x^2+y^2}+\sqrt{xy}\)

\(\Rightarrow A^2=x^2+y^2+xy+2\sqrt{xy(x^2+y^2)}\)

Áp dụng BĐT AM-GM:

\(x^2+y^2\geq 2xy\Rightarrow 2\sqrt{xy(x^2+y^2)}\geq 2\sqrt{xy.2xy}\geq xy\) do \(x,y\geq 0\)

\(\Rightarrow A^2\geq x^2+y^2+xy+xy\Leftrightarrow A^2\geq (x+y)^2=4\)

\(\Leftrightarrow A\geq 2\) (đpcm)

Dấu bằng xảy ra khi \((x,y)=(2,0)\) và hoán vị.

Mặt khác:

Áp dụng BĐT Bunhiacopxky:

\(A^2=(\sqrt{x^2+y^2}+\sqrt{xy})^2\leq (x^2+y^2+2xy)(1+\frac{1}{2})\)

\(\Leftrightarrow A^2\leq (x+y)^2.\frac{3}{2}=4.\frac{3}{2}=6\)

\(\Leftrightarrow A\leq \sqrt{6}\) (đpcm)

Dấu bằng xảy ra khi \((x,y)=\left(\frac{3+\sqrt{3}}{3}; \frac{3-\sqrt{3}}{3}\right)\)

11 tháng 2 2018

cách làm cho lớp 9

\(2=x+y\ge2\sqrt{xy}\Rightarrow xy\le1\)

\(x;y\ge0\Rightarrow xy\ge0\) \(0\le xy\le1\)

đặt x y =t => 0<=t<=1

\(A=\sqrt{x^2+y^2}+\sqrt{xy}=\sqrt{4-2t}+\sqrt{t}\)

\(A>0;A^2=4-t+2\sqrt{4t-2t^2}\)

m =A^2 -4 \(\Leftrightarrow m+t=\sqrt{4t-2t^2}\)

m +t >= 0=> m>=-1

\(\Leftrightarrow m^2+2mt+t^2=4\left(4t-2t^2\right)\)

\(9t^2+2\left(m-8\right)t+m^2=0\)

\(\Delta'\ge0\Leftrightarrow\left(m-8\right)^2-9m^2\ge0\Rightarrow-8m^2-2.8m+64\ge0\)

\(-4\le m\le2\)

với m =2 => t=2/3 đảm bảo điều kiện => GTLN m =2

m cần đảm bảo điều kiện

m+t>=0

\(\Leftrightarrow m+\dfrac{-\left(m-8\right)-\sqrt{-8m^2-18m+64}}{9}\ge0\)

\(\Leftrightarrow\dfrac{9m-\left(m-8\right)-\sqrt{-8m^2-18m+64}}{9}\ge0\)

\(\Leftrightarrow8m+8\ge\sqrt{-8m^2-18m+64}\)

m>=-1 => 8m+8 >=0

\(\Leftrightarrow64m^2+2.8.8m+64\ge-8m^2-18m+64\)

\(\Leftrightarrow m^2+2m\ge0\Rightarrow\left[{}\begin{matrix}m\le-2\\m\ge0\end{matrix}\right.\) đang xét m>=1 => m>=0

=> \(0\le m\le2\)

\(0\le A^2-4\le2\Leftrightarrow4\le A^2\le6\)

\(A>0\Rightarrow2\le A\le\sqrt{6}\) =>dpcm

đẳng thức khi t =0 ; t=2/3

\(t=0\Rightarrow\left[{}\begin{matrix}\left(x;y\right)=\left(2;0\right)\\\left(x;y\right)=\left(0;2\right)\end{matrix}\right.\)

\(t=\dfrac{2}{3}\) giải hệ

\(\left\{{}\begin{matrix}x+y=2\\xy=\dfrac{2}{3}\end{matrix}\right.\)

x;y là nghiệm pt : \(3z^2-6z+2=0\)

\(\Delta=9-6=3\Rightarrow\left(x;y\right)=\left(\dfrac{3\pm\sqrt{3}}{3};\dfrac{3\mp\sqrt{3}}{3}\right)\)