chứng minh rằng trong 11 số tự nhiên bất kì bao giờ cũng tồn tại ít nhất 2 số có hiệu chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh rằng trong 11 số tự nhiên bất kì bao giờ cũng tồn tai ít nhất 2 số có hiệu chia hết cho10
Gọi 11 số tự nhiên liên tiếp lần lượt là:
\(a;a+1;a+2;a+3;...;a+10\)
Ta nhận thấy rõ ràng có 1 cặp số có hiệu chia hết cho 10. Đó chính là
\(a+10-a=10⋮10\)(đpcm)
Mik làm 11 số liên tiếp mà số cuối cộng 10 để chứng minh rằng có ít nhất 2 số có hiệu chia hết cho 10
Xem phần chứng minh tồn tại ít nhất 2 số có hiệu chia hết cho 10 tại đây nhé!
Bạn tham khảo:
Câu hỏi của kiều nguyệt Hằng - Toán lớp 6 - Học toán với OnlineMath
Các số tự nhiên khi chia cho 3 chỉ có thể dư 0,1 hoặc 2.
Áp dụng nguyên lý Đi-rích-lê, ta có:
Trong 4 số tự nhiên bất kỳ bao giờ cũng sẽ có 2 số cùng số dư khi chia cho 3, do đó hiệu của chúng sẽ chia hết cho 3.
Bn an vao chu xanh Chứng minh rằng trong 4 số tự nhiên bất kì bao giờ cũng có 2 số có hiệu chia hết cho 3 tick nha Nguyễn Phương Ly
3 số lẻ liên tiếp hoặc 3 số chẵn liên tiếp chia hết cho 3